Pharmacophore

(An International Research Journal) Available online at http://www.pharmacophorejournal.com/ Original Research Paper

QSAR AND DOCKING STUDIES OF CHLORPROPAMIDE DERIVATES

Teodora E. Harsa*, Alexandra M. Harsa and Mircea V. Diudea Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028 Cluj, Romania

ABSTRACT

A study of 40 chlorpropamide derivatives, QSAR (Quantitative Structure Activity Relationship) and molecular docking approaches were applied to explore the structural requisites of chlorpropamide derivatives for CYTOCHROME P450 2C9 inhibitory activity. A set of forty chlorpropamide, was modeled, within the hypermolecule strategy; the predicted activity was LD_{50} and prediction was done on similarity clusters with the leaders chosen as the best docked ligands on the CYTOCHROME P450 2C9.

Keywords: Chlorpropamide, QSAR, log P, Similarity, Hypermolecule, Leave-one-out, AUTODOCK Vina, Docking, Receptor.

INTRODUCTION

Chlorpropamide is an oral hypoglycemic agent which lower blood glucose levels, which may result in coma, and may require hospitalization.¹ Chlorpropamide increase the secretion of insulin and also used in partial central diabetes insipidus.² Ability to control the drug opens new routes to discover a new compound.³ QSAR approaches have successfully produced many classification and regression models that accurately predict a variety of LD₅₀ properties for a diverse array of compounds.⁴ The present work focuses on the molecular docking analysis of chlorpropamide and its analogues against protein.⁵ This work was carried out by molecular docking studies to determine whether 40 molecules of chlorpropamide interact whit protein CYTOCHROME P450 2C9 and to find the orientation that enhances this interaction as well as minimizing the total energy of the interaction complex.^{6,7} The compounds in the test set have a range of biological activity values similar to that of the training set. QSARs are based on Graph Theory, one of the most common techniques used similarity cluster in validation. using macromolecular descriptors, named topological indexes are calculated.^{8,9}

In the present study, a molecular docking analysis has been performed on 40 chlorpropamide derivatives on the protein 1OG5, then we made a QSAR study to predicting LD_{50} of chlorpropamide derivatives. For targeting protein 1OG5 interactions, the critical binding motifs were replaced by chlorpropamide derivative ligands. The ligands will be ranked according to their binding affinity for the receptor.

In this article, we propose a new approach that develops clusters of similar structures aimed to be quasi-congeneric subsets in a better prediction of the toxicology activity, even the test set has been chosen the one with the lowest docking energies.

Structural Molecular Data

A set of 40 were taken from PubChem Database¹⁰ (Table 1); the set was divided into a training set (25 molecules) and a test set (15 molecules), taken randomly. The property chosen for modeling was log P (calculated, Table 1) and LD_{50} (on mouse, oral route administrated, Table2).

Table 1:	Chlorpro	pamide m	olecular	structures	and their	log P ((taken from	PubChem)
								,

Mol.	Canonical SMILES	log P	LD50
1	CCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)Cl	2.3	580
2	CCCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)C	2.3	490
3	CCCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)CO	1.1	490
4	CCCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)C(=O)O	1.7	490
5	COCCOC1=CN=C(N=C1)NS(=O)(=O)C2=CC=CC=C2	1.1	2800
6	C1=CC(=CC=C1N)S(=O)(=O)NC(=S)N	-0.7	3240
7	C1COCCN1S(=O)(=O)C2=CC=C(C=C2)N	0.1	2150
8	CC(=O)NCCC1=CC=C(C=C1)S(=O)(=O)Cl	1.6	200
9	CC1=CC=C(C=C1)S(=O)(=O)NC(=NCC2=CC=C2)SC	3.8	300
10	CC(=O)NC1=CC=C(C=C1)S(=O)(=O)NC(=NCC2=CC=C2)SC	2.6	300
11	CCOC(=O)NC1=CC=C(C=C1)S(=O)(=O)N2CCOCC2	0.6	2500
12	CC1=CC(=NC(=N1)NS(=O)(=O)C2=CC=C(C=C2)N)C	0.3	50000
13	COC1=CN=C(N=C1)NS(=O)(=O)C2=CC=C(C=C2)N	0.4	16000
14	C1=C(C(=CC(=C1Cl)Cl)Cl)NS(=O)(=O)C2=C(C(=CC(=C2Cl)Cl)Cl)O	6.4	179
15	CC1=C(ON=C1C)NS(=O)(=O)C2=CC=C(C=C2)N	1	6800
16	C1=CC(=CC(=C1)S(=O)(=O)N)N	-0.4	4500
17	C1=CC(=C(C=C1S(=O)(=O)N)Cl)N	0.8	2850
18	CNS(=O)(=O)C1=CC(=C(C=C1)N)C1	1.2	3000
19	CC(=O)NC1=C(C=C(C=C1)S(=O)(=O)N)Cl	0.1	5000
20	C1=CC(=CC=C1S(=O)(=O)N)Br	1.4	1700
21	CCS(=0)(=0)C1=CC=C(C=C1)F	1.6	542
22	COS(=0)(=0)C1=CC=CC=C1	1.2	250
23	C1=CC(=CC=C1O)S(=O)(=O)O	0.2	6400
24	C1=CC(=CC=C1OS(=O)(=O)C2=CC=C(C=C2)Cl)Cl	4.3	1475
25	CC1=C(C=C(C=C1)S(=O)(=O)O)N(CCC1)CCC1	2.3	200
26	CS(=O)(=O)OC1=C(C=C(C=C1)Cl)Cl	2.8	1070
27	C1=CC(=C(C=C1S(=O)(=O)N)Cl)N	0.8	2950
28	CCS(=0)(=0)C1=CC=C(C=C1)N	0.2	1000
29	C(CS(=O)(=O)C1=C(C(=C(C(=C1Cl)Cl)C#N)Cl)Cl)CCl	4.3	300
30	CCCCNS(=O)(=O)C1=CC=CC=C1	2.1	2500
31	C1=CC=C(C=C1)NS(=O)(=O)C2=CC=C(C=C2)F	2.3	750
32	CC(=O)NC1=C(C=C(C=C1)S(=O)(=O)NC)Cl	0.5	3000
33	CNS(=0)(=0)C1=CC=C(C=C1)O	0.9	2500
34	C1=CC(=CC=C1N)S(=O)(=O)N	-0.6	3000
41	C1CCC(CC1)NC(=O)NS(=O)(=O)C2=CC=C(C=C2)Cl	3.4	1525
36	CC1=NC(=NC=C1)NS(=O)(=O)C2=CC=C(C=C2)N	0.1	25000
37	COC1=NC(=NC(=C1)NS(=O)(=O)C2=CC=C(C=C2)N)OC	1.6	3200
38	CC1=CC(=NC(=N1)NS(=O)(=O)C2=CC=C(C=C2)N)C(F)(F)F	0.8	4150
39	C1=CC(=CC(=C1)S(=O)(=O)NC2=NC=C(C=N2)Cl)N	1.1	700
40	COC1=NC=NC(=C1)NS(=O)(=O)C2=CC=C(C=C2)N	0.8	4680

A hypermolecule (Figure 1) was built up by superposing all the 40 molecules under study. The hypermolecule is considered to mimics the investigated statistical hyperspace.¹¹ According to the numbering of the hypermolecule positions,

binary vectors were constructed, with 1 when in the current molecule exists a corresponding atom and zero, otherwise. In the above binary vectors, the values 1 are next replaced by local characteristics mass fragments or local

topological descriptors. We used here mass fragments in building the weighted vector for every molecule; the modeled property was LD_{50} (Table 4).

Figure 1: The hypermolecule comprising common features of the dataset

Protein

The protein (Figure 2) was downloaded from RCSB protein data bank, bearing the PDB code- 10G5.¹²

Figure 2: PDB Entry ID: CYTOCHROME P450 2C9 (from RCBS Protein data bank)

Docking Requirements

The software AutoDock Vina v.1.0.2 was used to perform molecular docking of chlorpropamide to CYTOCHROME P450 2C9 isoforms with the crystal structures from the Protein Data Bank. The docking parameters were set to the default values. The grid boxes were 90°A×90°A×90A°, encompassing their active site cavities. The binding modes of chlorpropamide to CYTOCHROME P450 2C9 with lowest binding free energy were chosen for further optimum docking conformation, while probe substrates in the metabolism position closer to the heme sulfur were identified. The simulation results were presented by PyMOL.¹³

Table 2: List of ligands showing their molecular formula, molar mass, hydrogen bond acceptors, hydrogen bond donors, Log P and torsions

Ligand	Log P	Molecular Weight	Molecular	H-Bond	H-Bond	Torsions
		[g/mol]	Formula	Donor	Acceptor	
1	2.3	276.739	$C_{10}H_{13}ClN_2O_3S$	2	3	4
2	2.3	270.351	$C_{12}H_{18}N_2O_3S$	2	3	5
3	1.1	270.351	$C_{12}H_{18}N_2O_4S$	3	4	6
4	1.7	300.330	$C_{12}H_{16}N_2O_5S$	3	5	5
5	1.1	271.339	$C_{13}H_{15}N_3O_4S$	1	7	5
6	-0.7	231.299	$C_7H_9N_3O_2S_2$	3	4	1
7	0.1	242.298	$C_{10}H_{14}N_2O_3S$	1	5	3
8	1.6	261.728	$C_{10}H_{12}ClNO_3S$	1	4	5
9	3.8	334.462	$C_{16}H_{18}N_2O_2S_2\\$	1	4	6
10	2.6	377.487	$C_{17}H_{19}N_3O_3S_2\\$	2	5	7
11	0.6	314.360	$C_{13}H_{18}N_2O_5S_2\\$	1	7	5
12	0.3	278.334	$C_{12}H_{14}N_4O_2S$	2	6	4
13	0.4	280.307	$C_{11}H_{12}N_4O_3S$	2	7	5
14	6.4	455.959	$C_{12}H_5Cl_6NO_3S$	2	4	3
15	1	267.307	$C_{11}H_{13}N_3O_3S$	2	6	4
16	-0.4	172.204	$C_6H_8N_2O_2S$	2	4	3
17	0.8	206.652	$C_6H_7ClN_2O_2S$	2	4	4
18	1.2	220.679	C7H9ClN2O2S	2	4	4
19	0.1	248.689	C ₈ H ₉ ClN ₂ O ₃ S	2	4	4
20	1.4	236.088	C ₆ H ₆ BrNO ₂ S	1	3	2
21	1.6	188.219	C ₈ H ₉ FO ₂ S	0	3	2
22	1.2	172.201	C ₇ H ₈ O ₃ S	0	3	2
23	0.2	174.175	C ₆ H ₆ O ₄ S	2	4	3
24	4.3	303.164	$C_{12}H_8Cl_2O_3S$	0	3	4
25	3.4	316.807	$C_{13}H_{17}ClN_2O_3S$	2	3	3
26	2.8	241.093	C7H6Cl2O3S	0	3	2
27	0.8	206.652	C ₆ H ₇ ClN ₂ O ₂ S	2	4	3
28	0.2	185.246	$C_8H_{11}NO_2S$	1	3	3
29	4.3	381.493	$C_{10}H_6Cl_5NO_2S$	0	3	4
30	2.1	213.299	$C_{10}H_{15}NO_2S$	1	3	4
31	2.3	251.280	C ₁₂ H ₁₀ FNO ₂ S	1	4	3
32	0.5	262.715	$C_9H_{11}ClN_2O_3S$	2	4	3
33	0.9	187.218	C7H9NO3S	2	4	3
34	-0.6	172.207	$C_6H_8N_2O_2S$	2	4	3
35	-0.7	231.299	$C_7H_9N_3O_2S_2$	3	4	5
36	0.1	264.308	$C_{11}H_{12}N_4O_2S$	2	6	4
37	1.6	310.332	$C_{12}H_{14}N_4O_4S$	2	8	6
38	0.8	332.305	$C_{12}H_{11}F_3N_4O_2S$	2	9	5
39	1.1	284.726	$C_{10}H_9ClN_4O_2S$	2	6	4
40	0.8	280.306	$C_{11}H_{12}N_4O_3S$	2	7	2

Computational Details

The structures have been optimized at PM3 and $MM^{+.14}$ Topological indices have beed computed by TOPOCLUJ software¹⁵; some of them (Centric index of partial charges shells=Cen, Total adjacency = Adj, Detour = De, Distance = Di, D3D, SD), HOMO and LD₅₀ are listed in Table 3.

Mol.LD50SDHomoChD3DDeDi158064648.29-10.040.156507.30570249064648.29-9.740.037.008.00810449064648.29-9.610.1089010.009305280064648.29-10.150.057.708.706906324068090.50-7.510.103604403107215067983.47-9.19-0.43470740430820061608.92-10.01-0.0851063047093006687.86-8.810.1810001000100103006726.78-9.080.251400230010001125006134.93-9.22-0.357.30120070113160007973.493-9.22-0.22720110070614450062046.72-9.15-0.231802501501568006493.82-8.93-0.2020030020016450062046.72-9.15-0.2318025015017285068851.22-10.36-0.231802501501645006706.79-8.820.024105403802017006725.87-10.64-0.16190250150 <tr< th=""><th></th><th></th><th>1 0</th><th></th><th>1</th><th></th><th></th><th></th></tr<>			1 0		1			
1 580 64648.29 -10.04 0.15 650 730 570 2 490 64648.29 -9.74 0.03 770 870 690 3 490 64648.29 -9.61 0.10 890 1000 810 4 490 64648.29 -10.15 0.05 770 870 690 6 3240 68090.50 -7.51 0.10 360 440 310 7 2150 67983.47 -9.19 -0.43 470 740 430 8 200 61608.92 -10.01 -0.08 510 630 470 9 300 6687.86 -8.81 0.18 1000 1600 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.22 -0.35 730 1200 720 13 16000 7974.93 -9.25 </td <td>Mol.</td> <td>LD₅₀</td> <td>SD</td> <td>Homo</td> <td>Ch</td> <td>D3D</td> <td>De</td> <td>Di</td>	Mol.	LD ₅₀	SD	Homo	Ch	D3D	De	Di
2 490 64648.29 -9.74 0.03 770 870 690 3 490 64648.29 -9.61 0.10 890 1000 810 4 490 64648.29 -8.08 0.30 1000 1100 930 5 2800 64648.29 -10.15 0.05 770 870 690 6 3240 68090.50 -7.51 0.10 360 440 310 7 2150 67983.47 -9.19 -0.43 470 740 430 8 200 61608.92 -10.01 -0.08 510 630 470 9 300 66807.86 -8.81 0.18 1000 1600 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 6824.93 -9.22 -0.35 730 1200 720 13 16000 7974.93 -9.25	1	580	64648.29	-10.04	0.15	650	730	570
3 490 64648.29 -9.61 0.10 890 1000 810 4 490 64648.29 -8.08 0.30 1000 1100 930 5 2800 64648.29 -10.15 0.05 770 870 690 6 3240 68090.50 -7.51 0.10 360 440 310 7 2150 67983.47 -9.19 -0.43 470 740 430 8 200 61608.92 -10.01 -0.08 510 630 470 9 300 66807.86 -8.81 0.18 1000 1600 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.28 0.02 720 1100 760 15 6800 64938.32 -8.93 -0.20 720 1100 760 15 6800 62046.72 -	2	490	64648.29	-9.74	0.03	770	870	690
4 490 64648.29 -8.08 0.30 1000 1100 930 5 2800 64648.29 -10.15 0.05 770 870 690 6 3240 68090.50 -7.51 0.10 360 440 310 7 2150 67983.47 -9.19 -0.43 470 740 430 8 200 61608.92 -10.01 -0.08 510 630 470 9 300 66807.86 -8.81 0.18 1000 1200 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.23 180 250 150 13 16000 79734.93 -9.22 120 1100 760 15 6800 64938.32 -8.93	3	490	64648.29	-9.61	0.10	890	1000	810
5 2800 64648.29 -10.15 0.05 770 870 690 6 3240 68090.50 -7.51 0.10 360 440 310 7 2150 67983.47 -9.19 -0.43 470 740 430 8 200 61608.92 -10.01 -0.08 510 630 470 9 300 66807.86 -8.81 0.18 1000 1600 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.22 230 310 190 18 3000 66666.35	4	490	64648.29	-8.08	0.30	1000	1100	930
6 3240 68090.50 -7.51 0.10 360 440 310 7 2150 67983.47 -9.19 -0.43 470 740 430 8 200 61608.92 -10.01 -0.08 510 630 470 9 300 66807.86 -8.81 0.18 1000 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.20 650 970 610 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36	5	2800	64648.29	-10.15	0.05	770	870	690
7 2150 67983.47 -9.19 -0.43 470 740 430 8 200 61608.92 -10.01 -0.08 510 630 470 9 300 66807.86 -8.81 0.18 1000 1600 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.20 650 970 610 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 6851.22 -10.36 -0.22 230 310 190 18 3000 66706.79	6	3240	68090.50	-7.51	0.10	360	440	310
8 200 61608.92 -10.01 -0.08 510 630 470 9 300 66807.86 -8.81 0.18 1000 1600 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.20 650 970 610 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79	7	2150	67983.47	-9.19	-0.43	470	740	430
9 300 66807.86 -8.81 0.18 1000 1600 1200 10 300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.20 650 970 610 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 240 300 200 21 542 65069.00	8	200	61608.92	-10.01	-0.08	510	630	470
10300 67260.78 -9.08 0.25 1400 2300 1700 11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.20 650 970 610 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 <td< td=""><td>9</td><td>300</td><td>66807.86</td><td>-8.81</td><td>0.18</td><td>1000</td><td>1600</td><td>1200</td></td<>	9	300	66807.86	-8.81	0.18	1000	1600	1200
11 2500 66234.93 -9.68 0.01 1100 1500 1000 12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.20 650 970 610 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87	10	300	67260.78	-9.08	0.25	1400	2300	1700
12 50000 113734.93 -9.22 -0.35 730 1200 720 13 16000 79734.93 -9.25 -0.22 720 1100 760 15 6800 64938.32 -8.93 -0.20 650 970 6110 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 6751.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 6	11	2500	66234.93	-9.68	0.01	1100	1500	1000
131600079734.93 -9.25 -0.22 720110076015680064938.32 -8.93 -0.20 65097061016450062046.72 -9.15 -0.23 18025015017285068851.22 -10.36 -0.22 23031019018300066666.35 -7.20 -0.28 29037024019500067706.79 -8.82 0.02 41054038020170067253.87 -10.64 -0.16 1902501502154265069.00 -8.13 -0.30 17025015023640067253.87 -8.10 -0.16 19025015024147564958.41 -8.24 -0.23 55010006402520063934.93 -10.07 0.07 990130089026107065069.00 -9.15 0.15 27039025027295069835.92 -9.19 0.02 22031019028100067651.05 -9.22 -0.09 2303002002930062247.53 -9.67 0.53 74097066030250065340.26 -9.34 0.09 56087054032300064537.21 -9.53 0.22 43054039032300064	12	50000	113734.93	-9.22	-0.35	730	1200	720
15 6800 64938.32 -8.93 -0.20 650 970 610 16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 6751.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 660 30 2500 6555.20 -9.99 0.03 290 380 260 31 750 65340.26 -9.34 0.09 560 870 540 </td <td>13</td> <td>16000</td> <td>79734.93</td> <td>-9.25</td> <td>-0.22</td> <td>720</td> <td>1100</td> <td>760</td>	13	16000	79734.93	-9.25	-0.22	720	1100	760
16 4500 62046.72 -9.15 -0.23 180 250 150 17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -10.89 -0.02 240 300 200 22 250 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 6751.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 660 31 750 65340.26 -9.34 0.09 560 870 540 32 3000 64537.21 -9.53 0.22 430 </td <td>15</td> <td>6800</td> <td>64938.32</td> <td>-8.93</td> <td>-0.20</td> <td>650</td> <td>970</td> <td>610</td>	15	6800	64938.32	-8.93	-0.20	650	970	610
17 2850 68851.22 -10.36 -0.22 230 310 190 18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 67651.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 660 30 2500 65340.26 -9.34 0.09 560 870 540 32 3000 64537.21 -9.53 0.22 430 540 390 32 3000 69835.92 -9.31 -0.06 190	16	4500	62046.72	-9.15	-0.23	180	250	150
18 3000 66666.35 -7.20 -0.28 290 370 240 19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -10.89 -0.02 240 300 200 22 250 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 67651.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 660 30 2500 6555.20 -9.999 0.03 290 380 260 31 750 65340.26 -9.34 0.09 560 870 540 32 3000 64537.21 -9.53 0.22 430 540 390 32 3000 69835.92 -9.31 -0.06 190 <td>17</td> <td>2850</td> <td>68851.22</td> <td>-10.36</td> <td>-0.22</td> <td>230</td> <td>310</td> <td>190</td>	17	2850	68851.22	-10.36	-0.22	230	310	190
19 5000 67706.79 -8.82 0.02 410 540 380 20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -10.89 -0.02 240 300 200 22 250 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 67651.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 660 30 2500 6555.20 -9.99 0.03 290 380 260 31 750 65340.26 -9.34 0.09 560 870 540 32 3000 64537.21 -9.53 0.22 430 540 390 33 2500 65069.00 -9.90 0.05 230 300 200 34 3000 69835.92 -9.31 -0.06 190 250 150 <td>18</td> <td>3000</td> <td>66666.35</td> <td>-7.20</td> <td>-0.28</td> <td>290</td> <td>370</td> <td>240</td>	18	3000	66666.35	-7.20	-0.28	290	370	240
20 1700 67253.87 -10.64 -0.16 190 250 150 21 542 65069.00 -10.89 -0.02 240 300 200 22 250 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 67651.05 -9.22 -0.09 230 300 260 31 750 65340.26 -9.34 0.09 560 870 540 32 3000 64537.21 <t< td=""><td>19</td><td>5000</td><td>67706.79</td><td>-8.82</td><td>0.02</td><td>410</td><td>540</td><td>380</td></t<>	19	5000	67706.79	-8.82	0.02	410	540	380
21 542 65069.00 -10.89 -0.02 240 300 200 22 250 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 67651.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 660 30 2500 6555.20 -9.99 0.03 290 380 260 31 750 65340.26 -9	20	1700	67253.87	-10.64	-0.16	190	250	150
22 250 65069.00 -8.13 -0.30 170 250 150 23 6400 67253.87 -8.10 -0.16 190 250 150 24 1475 64958.41 -8.24 -0.23 550 1000 640 25 200 63934.93 -10.07 0.07 990 1300 890 26 1070 65069.00 -9.15 0.15 270 390 250 27 2950 69835.92 -9.19 0.02 220 310 190 28 1000 67651.05 -9.22 -0.09 230 300 200 29 300 62247.53 -9.67 0.53 740 970 660 30 2500 65555.20 -9.99 0.03 290 380 260 31 750 65340.26 -9.34 0.09 560 870 540 32 3000 64537.21 -9	21	542	65069.00	-10.89	-0.02	240	300	200
23640067253.87-8.10-0.1619025015024147564958.41-8.24-0.2355010006402520063934.93-10.070.07990130089026107065069.00-9.150.1527039025027295069835.92-9.190.0222031019028100067651.05-9.22-0.092303002002930062247.53-9.670.537409706603025006555.20-9.990.032903802603175065340.26-9.340.0956087054032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	22	250	65069.00	-8.13	-0.30	170	250	150
24147564958.41-8.24-0.2355010006402520063934.93-10.070.07990130089026107065069.00-9.150.1527039025027295069835.92-9.190.0222031019028100067651.05-9.22-0.092303002002930062247.53-9.670.5374097066030250065555.20-9.990.032903802603175065340.26-9.340.0956087054032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.670.256301200740	23	6400	67253.87	-8.10	-0.16	190	250	150
2520063934.93-10.070.07990130089026107065069.00-9.150.1527039025027295069835.92-9.190.0222031019028100067651.05-9.22-0.092303002002930062247.53-9.670.5374097066030250065555.20-9.990.032903802603175065340.26-9.340.0956087054032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.1763010006403732006647.42-9.670.256301200740	24	1475	64958.41	-8.24	-0.23	550	1000	640
26107065069.00-9.150.1527039025027295069835.92-9.190.0222031019028100067651.05-9.22-0.092303002002930062247.53-9.670.5374097066030250065555.20-9.990.032903802603175065340.26-9.340.0956087054032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	25	200	63934.93	-10.07	0.07	990	1300	890
27295069835.92-9.190.0222031019028100067651.05-9.22-0.092303002002930062247.53-9.670.5374097066030250065555.20-9.990.032903802603175065340.26-9.340.0956087054032300064537.21-9.530.2243054039032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	26	1070	65069.00	-9.15	0.15	270	390	250
28100067651.05-9.22-0.092303002002930062247.53-9.670.5374097066030250065555.20-9.990.032903802603175065340.26-9.340.0956087054032300064537.21-9.530.2243054039032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	27	2950	69835.92	-9.19	0.02	220	310	190
2930062247.53-9.670.5374097066030250065555.20-9.990.032903802603175065340.26-9.340.0956087054032300064537.21-9.530.2243054039032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	28	1000	67651.05	-9.22	-0.09	230	300	200
30 2500 65555.20 -9.99 0.03 290 380 260 31 750 65340.26 -9.34 0.09 560 870 540 32 3000 64537.21 -9.53 0.22 430 540 390 32 3000 64537.21 -9.53 0.22 430 540 390 33 2500 65069.00 -9.90 0.05 230 300 200 34 3000 69835.92 -9.31 -0.06 190 250 150 35 1525 68090.50 -9.10 -0.09 330 440 310 36 25000 78412.34 -9.01 -0.17 630 1000 640 37 3200 67211.11 -7.19 0.06 870 1500 940 39 700 70623.14 -9.11 0.24 600 1000 630 40 4680 66647.42	29	300	62247.53	-9.67	0.53	740	970	660
3175065340.26-9.340.0956087054032300064537.21-9.530.2243054039032300064537.21-9.530.2243054039033250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	30	2500	65555.20	-9.99	0.03	290	380	260
32 3000 64537.21 -9.53 0.22 430 540 390 32 3000 64537.21 -9.53 0.22 430 540 390 33 2500 65069.00 -9.90 0.05 230 300 200 34 3000 69835.92 -9.31 -0.06 190 250 150 35 1525 68090.50 -9.10 -0.09 330 440 310 36 25000 78412.34 -9.01 -0.17 630 1000 640 37 3200 67211.11 -7.19 0.06 870 1500 940 39 700 70623.14 -9.11 0.24 600 1000 630 40 4680 66647.42 -9.67 0.25 630 1200 740	31	750	65340.26	-9.34	0.09	560	870	540
32 3000 64537.21 -9.53 0.22 430 540 390 33 2500 65069.00 -9.90 0.05 230 300 200 34 3000 69835.92 -9.31 -0.06 190 250 150 35 1525 68090.50 -9.10 -0.09 330 440 310 36 25000 78412.34 -9.01 -0.17 630 1000 640 37 3200 67211.11 -7.19 0.06 870 1500 940 39 700 70623.14 -9.11 0.24 600 1000 630 40 4680 66647.42 -9.67 0.25 630 1200 740	32	3000	64537.21	-9.53	0.22	430	540	390
33250065069.00-9.900.0523030020034300069835.92-9.31-0.0619025015035152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	32	3000	64537.21	-9.53	0.22	430	540	390
34 3000 69835.92 -9.31 -0.06 190 250 150 35 1525 68090.50 -9.10 -0.09 330 440 310 36 25000 78412.34 -9.01 -0.17 630 1000 640 37 3200 67211.11 -7.19 0.06 870 1500 940 39 700 70623.14 -9.11 0.24 600 1000 630 40 4680 66647.42 -9.67 0.25 630 1200 740	33	2500	65069.00	-9.90	0.05	230	300	200
35152568090.50-9.10-0.09330440310362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	34	3000	69835.92	-9.31	-0.06	190	250	150
362500078412.34-9.01-0.17630100064037320067211.11-7.190.0687015009403970070623.14-9.110.24600100063040468066647.42-9.670.256301200740	35	1525	68090.50	-9.10	-0.09	330	440	310
37 3200 67211.11 -7.19 0.06 870 1500 940 39 700 70623.14 -9.11 0.24 600 1000 630 40 4680 66647.42 -9.67 0.25 630 1200 740	36	25000	78412.34	-9.01	-0.17	630	1000	640
39 700 70623.14 -9.11 0.24 600 1000 630 40 4680 66647.42 -9.67 0.25 630 1200 740	37	3200	67211.11	-7.19	0.06	870	1500	940
40 4680 66647.42 -9.67 0.25 630 1200 740	39	700	70623.14	-9.11	0.24	600	1000	630
	40	4680	66647.42	-9.67	0.25	630	1200	740

Table 3: Topological indices computed for the in Table 1

The models fit abilities were assessed by the cross-validation leave one out analysis¹⁶ using a dedicated software.^{17,18}

RESULTS AND DISCUSSION

Docking Results

Table 4: The final lamarckian genetic algorithm docked state – Binding energy of ligands With the active site of the protein during nine conformations

Ligand	1	2	3	4	5	6	7	8	9	Docked Energy (kcal/mol)
1	-7.0	-6.9	-6.7	-6.5	-6.5	-6.5	-6.4	-6.4	-6.2	-7.0
2	-5.8	-5.6	-5.4	-5.3	-5.3	-5.2	-5.2	-5.1	-5.1	-5.8
3	-6.2	-6.2	-6.1	-6.0	-6.0	-5.8	-5.8	-5.5	-5.5	-6.2
4	-6.0	-5.9	-5.9	-5.7	-5.6	-5.6	-5.5	-5.5	-5.5	-6.0
5	-5.6	-5.2	-5.0	-4.8	-4.7	-4.7	-4.6	-4.5	-4.5	-5.6
6	-7.1	-6.7	-6.2	-5.8	-5.8	-5.6	-5.3	-5.3	-5.2	-7.1
7	-6.6	-6.3	-6.1	-5.5	-5.4	-5.4	-5.3	-5.3	-5.2	-6.6
8	-5.7	-5.6	-5.0	-4.7	-4.6	-4.4	-4.2	-4.0	-4.0	-5.7
9	-5.0	-5.0	-4.9	-4.8	-4.1	-4.1	-3.9	-3.9	-3.9	-5.0
10	-5.3	-5.0	-5.0	-4.8	-4.7	-4.7	-4.5	-4.5	-4.3	-5.3
11	-5.2	-4.9	-4.8	-4.7	-4.4	-4.4	-4.3	-4.3	-4.2	-5.2
12	-7.6	-7.6	-7.4	-7.4	-7.2	-7.2	-7.1	-7.1	-6.7	-7.6
13	-6.9	-6.7	-6.0	-5.9	-5.6	-5.5	-5.4	-5.2	-5.2	-6.9
14	-5.7	-5.6	-5.5	-5.4	-5.4	-5.4	-5.3	-5.3	-5.3	-5.7
15	-5.4	-5.1	-5.1	-5.0	-4.9	-4.9	-4.9	-4.8	-4.8	-5.4
16	-5.7	-5.5	-5.5	-5.3	-4.9	-4.8	-4.7	-4.5	-4.4	-5.7
17	-5.7	-5.5	-5.3	-5.2	-5.1	-5.0	-4.7	-4.6	-4.6	-5.7
18	-4.6	-4.6	-4.6	-4.5	-4.4	-4.4	-4.4	-4.4	-4.3	-4.6
19	-5.6	-5.0	-4.9	-4.9	-4.8	-4.7	-4.6	-4.5	-4.4	-5.6
20	-4.7	-4.6	-4.5	-4.5	-4.4	-4.4	-4.3	-4.2	-4.2	-4.7
21	-5.7	-5.5	-5.3	-5.1	-5.0	-4.7	-4.3	-4.2	-4.2	-5.7
22	-6.0	-5.8	-5.6	-5.6	-5.3	-5.3	-5.2	-5.1	-5.1	-6.0
23	-5.6	-5.4	-5.4	-5.3	-5.0	-4.9	-4.8	-4.7	-4.5	-5.6
24	-6.5	-6.3	-6.1	-6.0	-5.7	-5.7	-5.5	-5.5	-5.5	-6.5
25	-6.0	-6.0	-5.9	-5.7	-5.7	-5.7	-5.7	-5.6	-5.6	-6.0
26	-5.7	-5.6	-5.6	-5.3	-5.2	-5.1	-5.0	-5.0	-4.9	-5.7
27	-5.8	-5.6	-5.2	-5.1	-5.0	-4.8	-4.6	-4.5	-4.5	-5.8
28	-4.8	-4.5	-4.4	-4.3	-4.3	-4.3	-4.3	-4.3	-4.2	-4.8
29	-6.7	-6.7	-6.5	-5.0	-4.9	-4.8	-4.8	-4.8	-4.7	-6.7
30	-5.6	-5.5	-5.5	-5.5	-5.2	-5.2	-5.2	-5.1	-5.0	-5.6
31	-7.3	-6.4	-5.3	-5.3	-5.1	-5.1	-5.1	-5.0	-5.0	-7.3
32	-6.1	-6.0	-6.0	-5.5	-5.0	-4.7	-4.5	-4.5	-4.4	-6.1
33	-4.4	-4.3	-4.2	-4.2	-4.2	-4.2	-4.1	-4.1	-4.1	-4.4
34	-5.4	-5.1	-4.9	-4.9	-4.7	-4.5	-4.5	-4.3	-4.3	-5.4
35	-4.9	-4.8	-4.8	-4.6	-4.6	-4.5	-4.5	-4.5	-4.4	-4.9
36	-6.4	-6.1	-6.0	-5.9	-5.9	-5.8	-5.8	-5.7	-5.7	-6.4
37	-7.3	-7.0	-5.6	-5.6	-5.5	-5.5	-5.4	-5.3	-5.3	-7.3
38	-6.2	-6.2	-6.1	-6.0	-6.0	-5.9	-5.8	-5.8	-5.8	-6.2
39	-8.9	-8.7	-8.2	-8.0	-8.0	-8.0	-7.8	-7.7	-7.5	-8.9
40	-6.3	-5.6	-5.6	-5.4	-5.4	-5.3	-5.3	-5.3	-5.2	-6.3

The compound 39, 12, 37 and 31 tested for docking study showed high affinity with low energy of -8 kcal/mol with employed protein. Binding between 10G5 & compound indicates very good inhibition. Molecules 39, 12, 37, and 31 showed high affinity with low energy of -8.9 kcal/mol with employed protein (see in Table 3).¹⁹

Figure 4 (a): Pharmacophore model

Figure 4 (b): Selected examples of active chlorpropamide found through a virtual screen using the fourpoint pharmacophore model

The second five- point pharmacophore, shown in Figure 4 (b), was built according to the lowest binding energy conformation of these molecules.

It contains five center pharmacophores:

• One aromatic ring

- The amino group and the nitrogen atom attached to -SO₂- group
- The methoxy and chlorine groups interacted with protein.

QSAR Study

Mass fragments description (LD₅₀ based on the lowest energy docking)

Data reduction

Correlation weighting was performed on all the positions in the hypermolecule: the correlating coefficients of the statistically significant positions in the hypermolecule were used to multiply the local descriptors, actually the Mass fragments, thus resulting new weighted vectors CD_{ij} . Next, the local correlating descriptors are summed to give a global descriptor, $SD_i = \sum_j CD_{ij}$. This new descriptor is a linear combination of the local correlating descriptors

for the significant positions in the hypermolecule (e.g. H5, H11, H12, H13, H14, H15, H16, H17, H18, H19, H21, H22, H25, H27, H29). $LD_{50} = -63734.9 + 1 \times SD_{LD50}$ N=40; R²=0.891; s=2943.93; F = 303.234

QSAR Models

The models were performed on the training set (25 structures in Table 4) and the best results (in decreasing order of R^2) are listed below and in Table 5.

(i) Monovariate regression

 $LD_{50} = -61316.2 + 0.962 \times SD_{LD50}$

(ii) Bivariate regression

 $LD_{50} = -59547.6 + 0.933 \times SD_{LD50} - 4486.9 \times Ch$

(iii)Three-variate regression

 $\label{eq:lds} \begin{array}{rcl} LD_{50} &=& -62267.1 &+& 0.964 \times SD_{LD50} &+\\ 13.469 \times Di {-} 12.256 \times D3D & & \end{array}$

	Descriptors	\mathbf{R}^2	Adjust. R ²	St. Error	F
1	$\mathrm{SD}_{\mathrm{LD50}}$	0.935	0.932	2586.587	316.085
2	Ch	0.193	0.157	9106.129	5.278
3	НОМО	0.008	-0.037	10099.838	0.174
4	CfDe	0.001	-0.044	10133.180	0.029
5	SD _{LD50} , Ch	0.940	0.934	2550.563	163.351
6	SD _{LD50} , Di	0.936	0.929	2634.734	152.421
7	SD_{LD50} , D3D	0.935	0.929	2646.640	150.958
8	SD _{LD50} , De	0.935	0.929	2641.130	151.633
9	SD _{LD50} , C	0.935	0.929	2647.456	150.859
10	SD _{LD50} , Di, D3D	0.944	0.936	2513.240	112.702
11	SD _{LD50} , De, Di	0.942	0.933	2567.502	107.710
12	SD _{LD50} , Di, Ch	0.940	0.931	2607.585	104.221
13	SD _{LD50} , De, D3D	0.939	0.930	2633.090	102.083
14	SD _{LD50} , De, IE[CfMax]	0.938	0.929	2645.840	101.037

Table 5: The best models in describing LD₅₀ in the training set of chlorpropamide in Table 3

Model Validation

(a) Leave-one-out

The performances in leave-one-out analysis related to the models listed as best in Table 5 are presented in Table 6.

	Descriptors	Q^2	R^2-Q^2	St. Error _{loo}	F _{loo}
1	$\mathrm{SD}_{\mathrm{LD50}}$	0.129	0.806	9464.553	3.251
5	SD _{LD50} , Ch	0.177	0.763	9197.908	4.736
10	SD _{LD50} , Di, D3D	0.212	0.732	8999.516	5.928

Table 6: Leave-one-out analysis for best LD₅₀ models

(b) External validation

The values LD_{50cale} for each of the 15 molecules in the test set were chosen based on the lowest energy docking and computed with the same descriptors and the eq. 10, Table 5.²⁰

Data are listed in Table 7 and the monovariate correlation: $LD50 = 0.580 \times LD50_{calc.} + 1329.4$; n=15; R²=0.761; s=3510.249; F=41.371 plotted in Figure 5.

Mol.	LD ₅₀	LD _{50calc.}
1	580	1834.39
3	490	2125.71
4	490	2136.67
6	3240	4433.58
7	2150	4341.36
13	16000	14994.76
23	6400	3298.02
24	1475	-71.47
29	300	-371.10
31	750	1656.97
32	3000	970.02
36	25000	13978.00
37	3200	2734.06
39	700	6186.34
40	4680	1409.02

Table 7: Calculat	ed values	of LD ₅₀ 1	for the molec	ules in the	test set

(c) Similarity cluster validation

Validation can also be performed by using clusters of similarity: each of the 15 molecules in the test set (chosen as the best scored in the docking set) is the leader of its own cluster, selected by 2D similarity among the 25 structures of the learning set (each cluster comprising about 15-17 molecules).²¹ The values LD₅₀ calc. for each of the 15 molecules in the test set were chosen based on the lowest energy docking.

Data are listed in Table 8 and the monovariate correlation: $LD50 = 1.021 \times LD50_{calc.} + 400.86$; n=15; R²=0.996 s=472.684; F=2985.482 plotted in Figure 6.

Table 8: (Calculated va	lues of LD ₅₀ b	y similarity	clusters,	for the mol	eculesin th	ne test set
------------	---------------	----------------------------	--------------	-----------	-------------	-------------	-------------

Mol.	LD ₅₀	LD _{50calc.}
1	580	1188.26
3	490	1262.62
4	490	1503.12
6	3240	3583.96
7	2150	2301.96
13	16000	16093.27
23	6400	6138.98
24	1475	1745.26
29	300	968.68
31	750	958.16
32	3000	3050.12
36	25000	26613.14
37	3200	3378.21
39	700	1805.91
40	4680	5310.19

Figure 6: The plot LD50 vs. LD_{50 calc} by similarity clusters

CONCLUSIONS

A set of 40 derivatives Chlorpropamide, downloaded from the PubChem database, was submitted to a QSAR study. The set was split into a learning set and a test set, the last one being used for the validation of the models, in the socalled external set validation. Also, the validation was made by a new version of prediction by using similarity clusters. CYTOCHROME P450 2C9 has been investigated for its potential binding affinity with selective chlorpropamide derivatives. The docking result of the study of 40 chlorpropamide molecules demonstrated that the binding energies were in the range of -8.9 kcal/mol to -4.4 kcal/mol, with the minimum binding energy of -8.9 kcal/mol.

ACKNOWLEDGEMENTS

This paper is a result of a doctoral research made possible by the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project POSDRU/159/1.5/S/137750 - "Doctoral and Postoctoral Programs - support for increasing research competitiveness in the field of exact Sciences".

REFERENCES

- Takako, I; Fumitoshi, H; Daisuke, I; Hidetoshi, A and Kaneto, U (2010), "Crystallization and polymorphic transitions of chlorpropamide in aqueous 2-hydroxybutyl--cyclodextrin solution", *European Journal of Pharmaceutical Sciences*, Vol 39, 248-255.
- Terada, T; Sawada, K; Saito, H; Hashimoto, Y and Inui, K (2000), "Inhibitory effect of novel oral hypoglycemic agent nateglinide (AY4166) on peptide transporters PEPT1 and PEPT2", *Eur J Pharmacol.*, Vol 392 (1-2), 11-7.
- Boldyreva, EV; Dmitriev, V and Hancock, BC (2006), "Effect of pressure up to 5.5 GPa on dry powder samples of chlorpropamide form-A", *International Journal of Pharmaceutics*, Vol 327, 51– 57.
- 4. Chen, L and Chen, X (2012), "Results of molecular docking as descriptors to predict human serum albumin binding affinity", *Journal of Molecular Graphics and Modelling*, Vol 33, 35-43.
- Balavignesh, V; Srinivasan, E; Ramesh Babu, NG and Saravanan, N, (2013), "Molecular docking study ON NS5B polymerase of hepatitis c virus by screening of volatile compounds from Acacia concinna and ADMET prediction", *Int. J. of Pharm. & Life Sci. (IJPLS)*, Vol. 4, 4, 2548-2558.
- Lu, SY Jiang; YJ, Lv; J, Wu; TX, QS and Zhu, WL (2010), "Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions", J Mol Graph Model, Vol. 28, 766-774.
- Srinivasan, P; Sudha, A; Shahul Hameed, A; Prasanth, K and Karthikeyan, M (2011), "Screening of medicinal plant compounds against NS5B polymerase of

HCV (HCV) using molecular docking studies", *Journal of Pharmacy Research*, Vol. 4(1), 136-140.

- Fernández-Blanco, E; Aguiar-Pulido, V; Munteanu, CR and Dorado, J (2013), "Random Forest classification based on star graph topological indices for antioxidant proteins", *Journal of Theoretical Biology*, Vol. 317, 331–337
- Fernandez-Blanco, E; Rivero, D; Rabuñal, J and Dorado, J, (2012), "Automatic seizure detection based on star graph topological indices", *Journal of Neuroscience Methods*, Vol. 209, 410– 419.
- 10. "*PubChem database*", accessed 5.6. 2015.
- A. T, Balaban; A, Chiriac; I, Motoc and Z, Simon (1980), "Steric Fit in QSAR: Lectures Notes in Chemistry", Vol. 15, Springer, Berlin.
- 11. *"The RCBS Protein Data Bank"*, Available at: http://www.rcsb.org/pdb.
- 12. *"PyMol 0.97, DeLano Scientific"*, Available at: http://pymol.org
- 13. *"HyperChem* 7.52, *Hypercube"*, Available at: *Inc.*, http://www.hyper.com
- 14. Ursu, O and Diudea, MV (2005), "*TOPOCLUJ Software Program*", Babes-Bolyai University, Cluj.
- Bolboacă, SD; Jäntschi, L and Diudea, MV (2013), "Molecular Design and QSARs with Molecular Descriptors Family", *Current Computer-Aided Drug Design*, Vol. 9(2), 195-205.
- 16. Jäntschi, L (2005), "LOO Analysis (LOO: Leave One Out), Academic Direct Library of Software, Available at: http://l.academicdirect.org/Chemistry/SA Rs/MDF_SARs/loo/
- 17. Sanner, MF (1999), "Python: a programming language for software integration and development", *Journal of Molecular Graphics Modeling*, 17, 57–61.
- 18. Trott, O and Olson, AJ (2010), "AutoDock Vina: improving the speed

and accuracy of docking with a new scoring function, efficient optimization, and multithreading", *Journal of Computational Chemistry*, Vol. 31, 455-461.

19. Harsa, AM; Harsa, TE; Bolboaca, S and Diudea, MV (2014), "QSAR in flavonoids by similarity cluster prediction", *Curr.*

Comput.-Aided Drug Design, 10, 115-128.

20. Harsa, TE; Harsa, AM; Jantschi, L and Diudea, MV (2015), "QSAR study on Indole derivatives", *Journal of Chemical and Pharmaceutical Research*, Vol. 7, 3, 2378-2393.

Correspondence Author: Teodora E. Harsa Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028 Cluj, Romania

Cite This Article: Teodora, E Harsa; Alexandra, M Harsa and Mircea, V Diudea (2015), "QSAR and docking studies of chlorpropamide derivates", *Pharmacophore*, Vol. 6 (5), 208-219.

narmacophore Journal Associated with Elsevier Product	湖
USA CODEN: PHARM 7	德
ISSN 2229 - 5402	ş
*Impact Factor 1.728	FI