# **Pharmacophore**

ISSN-2229-5402

Journal home page: <u>http://www.pharmacophorejournal.com</u>



# DEVELOPMENT AND VALIDATION OF A STABILITY INDICATING ANALYTICAL METHOD FOR DETERMINATION OF RELATED SUBSTANCES BY RPHPLC FOR SOLIFENACIN SUCCINATE IN SOLIFENACIN SUCCINATE TABLETS

# Ranjith Reddy <sup>\*1</sup>, Rahul Sidhaye<sup>1</sup>, Aniruddha V. Sherikar<sup>1</sup>, Meghana Nadre<sup>1</sup>, Muralee Krishna<sup>1</sup>

1. Glenmark Pharmaceutical Limited, M-4, Taloja MIDC, District Raigad, Taloja, Taloja 400709, India

# ARTICLE INFO

ABSTRACT

Received: 26<sup>th</sup> Sep 2016 Received in revised form: 11<sup>th</sup> Jan 2017 Accepted: 19<sup>th</sup> Feb 2017 Available online: 28<sup>th</sup> Mar 2017

*Keywords:* Solifenacin succinate, Analytical Method Development, Validation, High performance Liquid Chromatography Solifenacin succinate is a competitive muscarinic acetylcholine receptor antagonist. This article describes development and validation for the determination of related substances of Solifenacin succinate in Solifenacin succinate Tablets by using a high performance liquid chromatography. The high performance liquid chromatography resolution was achieved on a Waters Xterra RP-8 250 x 4.6,  $5\mu$ , column with a gradient elution at a flow rate of 1.2 mL/min. The detection was performed by a photo diode array Detector. The method was validated in the concentration range of Limit of quantitation to 150% of working concentration. The intra and inter-day precision and accuracy were within Limit. The overall mean recoveries of Solifenacin succinate impurities were in the range of 90.0% to 110.0% for Limit of Quantitation, 50%, 100% and 150%.

Copyright © 2013 - All Rights Reserved - Pharmacophore

**To Cite This Article:** Ranjith Reddy, Rahul Sidhaye, Aniruddha V. Sherikar, Meghana Nadre, Muralee Krishna (2017), "development and validation of a stability indicating analytical method for determination of related substances by rphplc for solifenacin succinate in solifenacin succinate tablets", *Pharmacophore*, **8**(2), 11-23,

#### Introduction

Solifenacin succinate is a competitive muscarinic acetylcholine receptor antagonist. Muscarinic receptor antagonists are widely used for treatment of the syndrome of overactive bladder and urge urinary incontinence [1-4]. M2 and M3 receptors are mainly distributed in the bladder while M3 subtype is distributed predominantly in the salivary gland and that M3 subtype plays a major role in the physiological function of both organs. Solifenacin compared with oxybutynin binds to a greater extent to bladder M3 muscarinic receptors in the bladder while it may exert a relatively little activity to bind exocrine M3 muscarinic receptors [5-6]. Various methods are available for the analysis of Solifenacin in literature like LC–ESI-MS/MS, semi-micro high performance liquid chromatography. Analytical method for the estimation of Solifenacin in bulk drug was not reported by HPLC method or HPTLC method [7-8]. Analytical method is validated that allows the determination of Related Substances of Solifenacin succinate in Solifenacin succinate Tablets. The validation parameters, Specificity, forced degradation, linearity, repeatability, precision, Accuracy, Solution Stability and robustness were validated [9-10].

#### **Patients and Methods**

Corresponding Author: Ranjith Reddy E-mail: Ranjithkumar.reddy@glenmarkpharma.com, ranjithreddy\_e@yahoo.co, in

# Pharmacophore, 8(2) 2017, Pages: 11-23

Working standard and Impurity standard used in the Experiments are reported in Table No.1. Apparatus and instruments used in the experiment are listed in table No 2. Reagents and solvents used are: Water (HPLC grade, Milli Q), Di-sodium hydrogen phosphate anhydrous (AR grade), Acetonitrile (HPLC grade), Methanol (HPLC grade), and Orthophosphoric Acid (AR Grade).

| S No. | Name                  |
|-------|-----------------------|
| 1     | Solifenacin succinate |
| 2     | Impurity A            |
| 3     | Impurity B            |
| 4     | Impurity C            |

| Sr No | Instrument         | Make           | Software | Detector/Model No    |
|-------|--------------------|----------------|----------|----------------------|
| 1     | HPLC               | Waters         | Empower  | 2489 dual wavelength |
|       |                    |                | Software |                      |
| 2     | HPLC               | Waters         | Empower  | 2998 PDA Detector    |
|       |                    |                | Software |                      |
| 3     | Sonicator          | Lab India      | NA       | NA                   |
| 4     | Weight balance     | Mettler Toledo | NA       | ML204                |
| 5     | Oven               | Thermo lab     | NA       | GMP                  |
| 6     | Photolytic Chamber | Thermo lab     | NA       | GMP                  |

Development Trials: Standard, impurities and spiked sample were injected in to HPLC using the following trials.

| Chromatography<br>Parameters                         | Trial 01                                                                                           | Trial 02                                                                                                                                                                                                    |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Column                                               | X-Terra RP-8, 250 x 4.6mm, 5µm                                                                     | X-Terra RP-8, 250 x 4.6mm, 5µm                                                                                                                                                                              |  |
| Buffer                                               | 0.05M Ammonium Acetate in Water.<br>Filter through 0.45μ Nylon<br>membrane filter mixed and degas. | Weigh and transfer 1.42gm<br>Disodium Hydrogen Phosphate<br>Anhydrous in 1.0 litre water. Adjust<br>its pH 6.8 with orthophosphoric<br>acid. Filter through 0.45µ Nylon<br>membrane filter mixed and degas. |  |
| Mahila ahaaa                                         | Mobile phase A: Buffer (100%)                                                                      | Mobile phase A: Buffer :ACN<br>(90:10)                                                                                                                                                                      |  |
| Mobile phase                                         | Mobile phase B: Acetonitrile (100%)                                                                | Mobile phase B: Acetonitrile :<br>Methanol (70:30)                                                                                                                                                          |  |
| Diluent                                              | Prepare a mixture of Buffer and<br>Acetonitrile in the ratio of 50:50 v/v                          | Diluent 1: Buffer pH 6.8 PB<br>Diluent 2: Methanol: ACN (40 :40)<br>Diluent 3 : Buffer: Methanol : ACN<br>(20 : 40 : 40)                                                                                    |  |
| Flow Rate                                            | 1.0 mL/min.                                                                                        | 1.2 mL/min.                                                                                                                                                                                                 |  |
| Injection Volume                                     | 20 µL                                                                                              | 20 µL                                                                                                                                                                                                       |  |
| Wavelength                                           | 215 nm                                                                                             | 215 nm                                                                                                                                                                                                      |  |
| Column Temp.                                         | 25°C                                                                                               | 30°C                                                                                                                                                                                                        |  |
| Elution                                              | Gradient Elution                                                                                   | Gradient Elution                                                                                                                                                                                            |  |
| Standard<br>Concentration                            | Solifenacin Succinate (2.5ppm)                                                                     | Solifenacin Succinate (2.5ppm)                                                                                                                                                                              |  |
| Sample<br>Concentration Solifenacin Succinate 400ppm |                                                                                                    | Solifenacin Succinate 400ppm                                                                                                                                                                                |  |

Table: 1 Development Trials 01 and 02

Ranjith Reddy et al, 2017 Pharmacophore, 8(2) 2017, Pages: 11-23

|         | Gradient                      | Time MP-A MP-B   0 75 25   5 75 25   30 50 50   48 50 50   50 75 25   60 75 25                                                                                                                                                                                               | Time MP-A MP-B   0 70 30   8 70 30   28 45 55   42 45 55   50 70 30   60 70 30                                                                                                                                                                                                               |  |  |  |
|---------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Table:2 | Conclusion                    | Early elution of main peak and<br>impurities were found with<br>inadequate resolution and baseline<br>noise was on higher side.<br>So mobile phase and gradient were<br>changed and injected as Trial 02.                                                                    | Spiked sample injected in the above<br>chromatographic system, though the<br>main peak retention time enhanced<br>in this trial upto 14.0mins, it has<br>been observed that two peaks are<br>merging so spiked sample solution<br>was injected as trial 03 by slowing<br>gradient programme. |  |  |  |
|         |                               | Development Trials 03 and                                                                                                                                                                                                                                                    | 04                                                                                                                                                                                                                                                                                           |  |  |  |
|         | Chromatograph<br>y Parameters | Trial 03                                                                                                                                                                                                                                                                     | Trial 04                                                                                                                                                                                                                                                                                     |  |  |  |
|         | Column                        | X-Terra RP-8, 250 x 4.6mm, 5µm                                                                                                                                                                                                                                               | X-Terra RP-8, 250 x 4.6mm,                                                                                                                                                                                                                                                                   |  |  |  |
|         | Buffer                        | weigh and transfer 1.42gm Disodium hydrogen Phosphate Anhydrous in<br>1.0 litre water.adjust its pH 6.8 with orthophosphoric acid. Filter through<br>0.45µ Nylon membrane filter mixed and degas.                                                                            |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Mobile phase                  | Mobile phase A: Buffer :ACN (90:10)                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |  |  |  |
|         |                               | Mobile phase B: Acetonitrile : Methanol (70:30)                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |  |  |  |
|         |                               | Diluent 1: Buffer pH 6.8 PB                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Diluent                       | Diluent 2: Methanol: ACN (40 :40)<br>Diluent 3 : Buffer: Methanol : ACN (20 : 40 : 40)                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Flow Rate                     | 1.2 mL/min.                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Injection Volume              | 20 µL                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Wavelength                    | 215 nm                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Column Temp.                  | 30°C                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Elution                       |                                                                                                                                                                                                                                                                              | Gradient Elution                                                                                                                                                                                                                                                                             |  |  |  |
|         | Standard<br>Concentration     | Solifenacin Succinate (2.5ppm)                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              |  |  |  |
|         | Sample<br>Concentration       | Solifenacin Succ                                                                                                                                                                                                                                                             | inate 400ppm                                                                                                                                                                                                                                                                                 |  |  |  |
|         | Gradient                      | $\begin{array}{cccccc} Time & MP & MP - B \\ 0 & 78 & 22 \\ 10 & 78 & 22 \\ 25 & 60 & 40 \\ 40 & 40 & 60 \\ 50 & 78 & 22 \\ 60 & 78 & 22 \end{array}$                                                                                                                        | TimeMP-MP-B08020128020286040426040508020608020                                                                                                                                                                                                                                               |  |  |  |
|         | Conclusion                    | Spiked sample injected in the above<br>chromatographic system it has been<br>observed that Imp-C was merging<br>with the Gradient pattern<br>inclination. So its peak shape was<br>not found satisfactory. Further by<br>slowing gradient programme<br>injected as trial 04. | Spiked sample injected in the<br>above chromatographic system, It<br>was observed that all four peaks<br>of Imp-A, Imp-B, Imp-C and<br>Solifenacin succinate main peak<br>are well separated.                                                                                                |  |  |  |

Hence Trial 04 was considered as final optimised method and validation was performed on the following final methodology (Trail-04).

Pharmacophore, 8(2) 2017, Pages: 11-23

#### **Preparation of Buffer:**

Dissolve 1.42 g disodium hydrogen phosphate anhydrous in 11itre of Water. Adjust pH to 6.8 with Ortho-phosphoric acid.

| Mobile phase A<br>Mobile phase B<br>Diluent 1 |     | Buffer: Acetonitrile (90:10)<br>Acetonitrile: Methanol (70:30)<br>Buffer |  |
|-----------------------------------------------|-----|--------------------------------------------------------------------------|--|
| Diluent 2                                     | :   | Methanol: Acetonitrile (1:1)                                             |  |
| Diluent 3                                     | : B | uffer: Methanol: ACN (20: 40: 40)                                        |  |
| Chromatographic Conditions:                   |     |                                                                          |  |
| Column                                        | :   | Waters Xterra RP-8 250 x 4.6, 5µ                                         |  |
| Flow Rate                                     | :   | 1.2 mL / min.                                                            |  |
| Detection                                     | :   | 215 nm.                                                                  |  |
| Column Temp                                   | :   | 30°C.                                                                    |  |
| Injection Volume                              | :   | 20 µL.                                                                   |  |
| Run Time                                      | :   | 60 min.                                                                  |  |
| Retention time                                | :   | About 24 minutes                                                         |  |

| Time | Mobile Phase A | Mobile Phase B |
|------|----------------|----------------|
| 0    | 80             | 20             |
| 12   | 80             | 20             |
| 28   | 60             | 40             |
| 42   | 60             | 40             |
| 50   | 80             | 20             |
| 60   | 80             | 20             |

## Preparation of Diluted standard solution:

Weigh accurately about 25 mg of Solifenacin succinate working standard & transfer it into 100ml volumetric flask. Add 50ml of diluent 3 and sonicate for 5 minutes to dissolve and make up to the mark with diluent. Dilute 5.0 ml of this solution to 50 ml with the diluent 3 and mix. Dilute 5.0 ml of this solution to 50 ml with the diluent 3 and mix (2.5ppm).

#### **Preparation of impurity stock solution:**

Weigh accurately about 2.5 mg of Impurity A, B and C into 50 ml volumetric flask. Add 10ml of methanol and sonicate for 2 minutes to dissolve and make up to mark with methanol and mix well.

## Preparation of System suitability solution:

Weigh accurately about 100 mg of Solifenacin succinate working standard & transfer it into 250 ml volumetric flask. Add 200ml diluent 3 and sonicate for 10 mins to dissolve. Add 3 ml of impurity stock solution make up to the mark with diluent 3 and mix.

#### **Preparation of sample solution:**

Weigh and transfer 20 tablets in 250ml volumetric flask. Add 50ml diluent 1 and sonicate for 10minutes with intermittent shaking. Then add 150ml of diluent 2 and again sonicate for 20minutes with intermittent shaking. Cool and make up to the mark with diluent 2 and mix. Filter through  $0.45\mu m$  nylon membrane filter (400ppm).

#### **Preparation of Placebo solution:**

Weigh and transfer placebo powder equivalent to 100 mg of Solifenacin succinate excluding the weight of API into 250ml volumetric flask. Add 50ml diluent 1 and sonicate for 10minutes with intermittent shaking. Added 150ml of diluent 2 and again sonicated for 20minutes with intermittent shaking. Cool and make up to the mark with diluent 2 and mix. Filter through 0.45µm nylon membrane filter.

#### **Procedure:**

Separately inject equal volumes of Blank (diluent) solution, System suitability solution, Placebo solution, 6 replicates of diluted standard solution and Sample preparation.

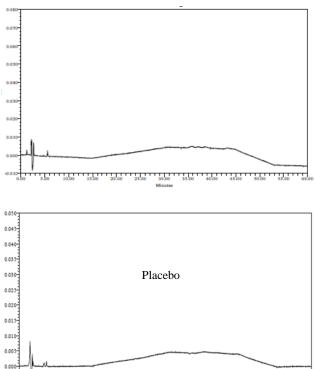
| Sr. NO. | SAMPLE                | RRT |
|---------|-----------------------|-----|
| 1       | Solifenacin succinate | 1.0 |

# Pharmacophore, 8(2) 2017, Pages: 11-23

|   |            | 0.5  |
|---|------------|------|
| 2 | Impurity A | 0.0  |
|   |            | 0.84 |
| 3 | Impurity B |      |
|   |            | 1.78 |
| 4 | Impurity C |      |

# Evaluation of system suitability:

% RSD of six replicate injections of diluted standard injections should not be more than 5.0. Resolution Between Impurity B and Solifenacin succinate peak should not be less than 1.5. Theoretical Plates for Solifenacin succinate peak should not be less than 1500. Tailing factor for Solifenacin succinate peak should not be more than 2.0.


# **RESULT AND DISCUSSION:**

**Specificity:** Specificity is the ability of the method to measure the analyte in the presence of process related and the degradation impurities. All known impurity solutions individually, sample solution and spiked sample solution with all known impurities at specification level were prepared and injected into the HPLC equipped with a photodiode array detector and analysed. Peak purity passed for Solifenacin succinate, Impurity A, Impurity B and Impurity C in control sample and spiked sample. Data is reported in Table no 3 and 4 and Figure No 1, 2, 3 and 4.

| Table 3: Peak purity | of standard and Control sample |
|----------------------|--------------------------------|
|                      |                                |

| Sample            | Solifenacin succinate |                     |  |  |
|-------------------|-----------------------|---------------------|--|--|
| Sumpro            | Purity angle          | Purity<br>Threshold |  |  |
| Standard solution | 2.683                 | 4.059               |  |  |
| Control sample    | 0.241                 | 1.048               |  |  |

| Table 4: Retention Time Table |                      |  |  |
|-------------------------------|----------------------|--|--|
| Name                          | Retention time (min) |  |  |
| Impurity A                    | 12.009               |  |  |
| Impurity B                    | 20.097               |  |  |
| Solifenacin succinate         | 24.192               |  |  |
| Impurity C                    | 47.296               |  |  |



Blank

-0.005 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60 Minutes

# Pharmacophore, 8(2) 2017, Pages: 11-23

Figure no. 1: Blank & Placebo Chromatograms

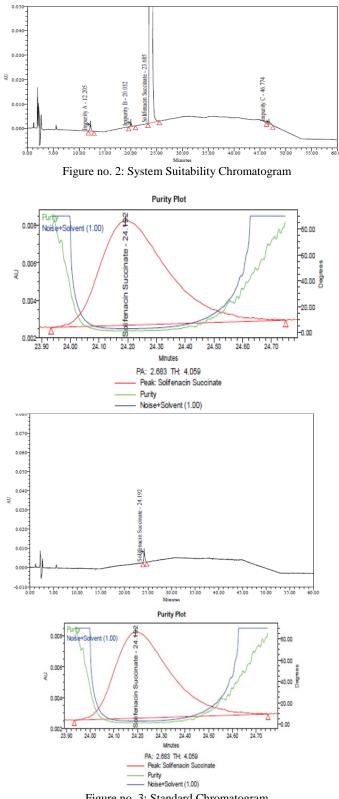



Figure no. 3: Standard Chromatogram

# Pharmacophore, 8(2) 2017, Pages: 11-23

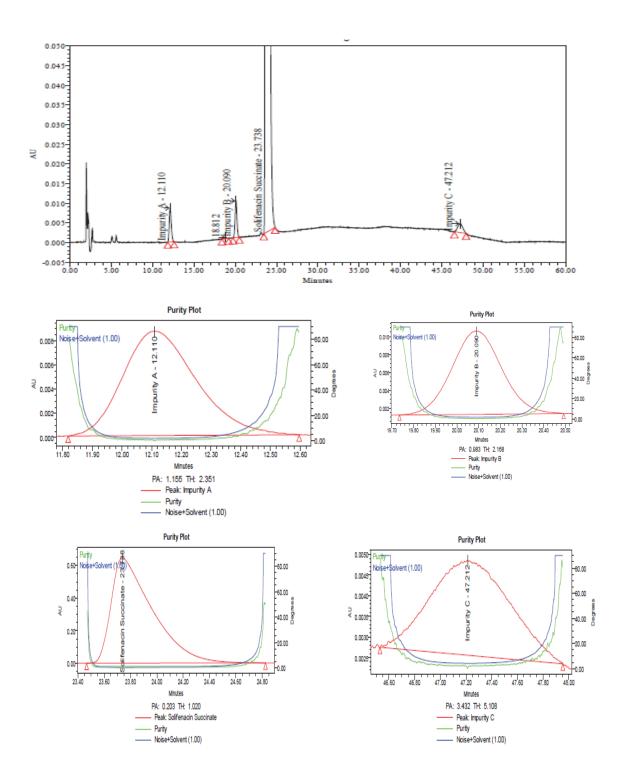



Figure no 4: Spiked Sample Chromatogram

|           |                                       | Table 5: Table for                                   | r impurities in I | Forced Degrada  | tion Studies      |                   |                |
|-----------|---------------------------------------|------------------------------------------------------|-------------------|-----------------|-------------------|-------------------|----------------|
| Sr.<br>No | Experiment                            | Degradation<br>Condition                             | %<br>Impurity A   | %<br>Impurity B | %<br>Impurity C   | %<br>Single max   | %<br>Total imp |
| 1         | Control                               |                                                      | ND                | 0.374           | ND                | 0.023<br>RRT:0.79 | 0.397          |
|           |                                       | 5N HCl – RT/0 hr                                     | ND                | 0.177           | ND                | 0.021<br>RRT:0.79 | 0.198          |
| 2         | Acid<br>Degradation                   | 5N HCl – RT/24 hr                                    | ND                | 0.166           | ND                | 0.020<br>RRT:0.79 | 0.186          |
|           | , , , , , , , , , , , , , , , , , , , | 5N HCl – 70°C/3 hr                                   | ND                | 0.398           | ND                | 0.337<br>RRT:0.87 | 0.766          |
|           |                                       | 2N NaOH- RT/0 hr                                     | ND                | 0.348           | ND                | 0.157<br>RRT:0.94 | 0.533          |
| 3         | Base<br>Degradation                   | 2N NaOH– RT/24 hr                                    | ND                | 0.451           | ND                | 0.047<br>RRT:1.79 | 0.519          |
|           | 2N NaOH– 70°C/3 hr                    | ND                                                   | 0.380             | ND              | 0.034<br>RRT:0.97 | 0.487             |                |
| 4         | Peroxide<br>Degradation               | 30% H <sub>2</sub> O <sub>2</sub> – RT/0<br>hrs_15ml | ND                | 21.549          | ND                | 0.025<br>RRT:0.77 | 21.574         |
| 5         | Thermal Degradation                   | 105°C – 72 hours                                     | 0.037             | 1.119           | ND                | 0.131<br>RRT:1.16 | 1.538          |
| 6         | Photolytic<br>Degradation             | 1.2 million lux hours                                | ND                | 0.207           | ND                | 0.015<br>RRT:0.78 | 0.222          |
| 7         | Humidity<br>Degradation               | 25°C/92%RH – 72<br>hours                             | ND                | 0.368           | ND                | 0.031<br>RRT:0.79 | 0.399          |

## Forced Degradation Studies: Summary of Forced degradation data is reported in Table no 5.

| RT: Room Temperature, | ND: Not Detected |
|-----------------------|------------------|
|-----------------------|------------------|

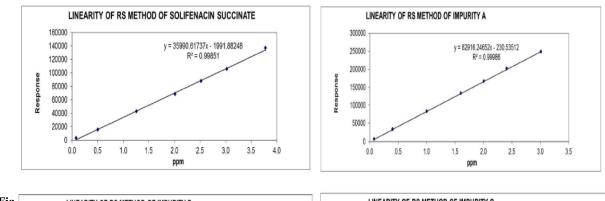
**Limit of Detection and Limit of Quantification:** Based on determination of Prediction linearity, six replicate injections were made for LOD and LOQ precision. Data is summarized in the given Table no 6.

|              | Solifenacin succinate | Impurity A | Impurity B | Impurity C |
|--------------|-----------------------|------------|------------|------------|
|              |                       | LOD        |            |            |
| % conc.      | 0.006                 | 0.006      | 0.006      | 0.006      |
| Conc.(µg/mL) | 0.024                 | 0.024      | 0.022      | 0.023      |
| %RSD         | 11.56                 | 11.30      | 10.65      | 12.79      |
|              |                       | LOQ        |            |            |
| % conc.      | 0.020                 | 0.020      | 0.019      | 0.019      |
| Conc.(µg/mL) | 0.081                 | 0.080      | 0.075      | 0.077      |
| %RSD         | 6.08                  | 3.65       | 7.41       | 3.26       |

#### Table 6: Limit of Detection and Limit of Quantitation

**Linearity:** Excellent correlation was achieved for the regression line of Solifenacin succinate and its related impurities over a range from LOQ to 150 % of the limit level. The correlation coefficient obtained for all the plots was greater than 0.99. The linearity results are tabulated in Table No. 7 and 8 and Figure No.5.

| Table 7: Table for Linearity of Solifenacin Succinate and Impurity A | Table 7: Table for Linearity | y of Solifenacin | Succinate and | Impurity A |
|----------------------------------------------------------------------|------------------------------|------------------|---------------|------------|
|----------------------------------------------------------------------|------------------------------|------------------|---------------|------------|


| Level | Concentration(µg/ml) | Solifenacin Succinate | Concentration(µg/ml) | Impurity A |
|-------|----------------------|-----------------------|----------------------|------------|
| LOQ   | 0.081                | 3312                  | 0.080                | 6412       |
| Lin-1 | 0.504                | 15756                 | 0.402                | 33515      |
| Lin-2 | 1.261                | 42613                 | 1.004                | 82145      |
| Lin-3 | 2.018                | 68557                 | 1.606                | 132456     |
| Lin-4 | 2.522                | 87956                 | 2.008                | 166381     |

Pharmacophore, 8(2) 2017, Pages: 11-23

| Level | Concentration(µg/ml) | Solifenacin Succinate | Concentration(µg/ml) | Impurity A |
|-------|----------------------|-----------------------|----------------------|------------|
| Lin-5 | 3.027                | 105781                | 2.410                | 201592     |
| Lin-6 | 3.784                | 137050                | 3.012                | 248330     |
|       | Slope                | 35991                 | Slope                | 82916      |
|       | Intercept            | -1992                 | Intercept            | -231       |
|       | Correlation          | 0.99926               | Correlation          | 0.99993    |

Table 8: Table for Linearity of Impurity B and Impurity C

| Level | Concentration(µg/ml)    | Impurity B | Concentration(µg/ml)    | Impurity C |
|-------|-------------------------|------------|-------------------------|------------|
| LOQ   | 0.075                   | 3300       | 0.077                   | 6668       |
| Lin-1 | 0.373                   | 16333      | 0.383                   | 32663      |
| Lin-2 | 0.933                   | 42860      | 0.957                   | 71980      |
| Lin-3 | 1.493                   | 69621      | 1.531                   | 116802     |
| Lin-4 | 1.866                   | 87174      | 1.914                   | 148987     |
| Lin-5 | 2.239                   | 104124     | 2.297                   | 172621     |
| Lin-6 | 2.799                   | 127098     | 2.871                   | 217582     |
|       | Slope                   | 46071      | Slope                   | 75147      |
|       | Intercept               | 4          | Intercept               | 1940       |
|       | Correlation Coefficient | 0.99971    | Correlation Coefficient | 0.99968    |



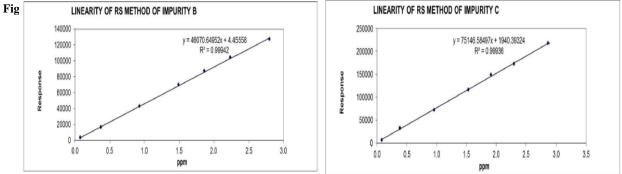



Figure no. 5: Linearity Plots

# Pharmacophore, 8(2) 2017, Pages: 11-23

Accuracy: The studies were carried out at four different levels: LOQ, 50%, 100%, and 150% of limits. The percentages of recoveries of all known impurities were calculated with respect to amount spiked and amount recovered. The percentage recovery at each level was calculated against the Solifenacin succinate standard. Mean recovery should be in the range of 90.0% to 110.0% for 50%, 100% and 150% levels and 85% to 115% for LOQ level. Mean recovery in percentage is reported in Table no.9.

|                  | Mean Recovery (%) |       |      |       |
|------------------|-------------------|-------|------|-------|
| Name of Impurity | LOQ               | 50%   | 100% | 150%  |
| Impurity A       | 99.9              | 98.7  | 98.3 | 99.0  |
| Impurity B       | 96.1              | 100.6 | 98.2 | 101.5 |
| Impurity C       | 98.9              | 104.2 | 96.1 | 96.0  |

**Precision:** Precision is the closeness of agreement between a series of measurements obtained from multiple sampling of same sample under the prescribed conditions. Quantification of individual impurities and Solifenacin succinate Tablets was performed for each of the preparations and the percent relative standard deviation (RSD) was determined for the content of the impurities.

To evaluate the intermediate precision, the same experiment was repeated with a different analyst, different lot of column and a different instrument in the same laboratory. Precision and Ruggedness data are reported in Table no.10.

Table 10: Over all %RSD of 12 preparations Comparison for Impurities in Precision and Ruggedness study

| Sr. No.  | %<br>Impuri<br>ty A | %<br>Impuri<br>ty B | %<br>Impuri<br>ty C | %Singl<br>e Max | %<br>Total<br>Imp. |
|----------|---------------------|---------------------|---------------------|-----------------|--------------------|
| Precisio | ND                  | 0.383               | ND                  | 0.032           | 0.415              |
| Precisio | ND                  | 0.383               | ND                  | 0.031           | 0.414              |
| Precisio | ND                  | 0.383               | ND                  | 0.031           | 0.414              |
| Precisio | ND                  | 0.385               | ND                  | 0.032           | 0.417              |
| Precisio | ND                  | 0.383               | ND                  | 0.032           | 0.415              |
| Precisio | ND                  | 0.383               | ND                  | 0.033           | 0.416              |
| Rugged   | ND                  | 0.398               | ND                  | 0.027           | 0.422              |
| Rugged   | ND                  | 0.400               | ND                  | 0.027           | 0.427              |
| Rugged   | ND                  | 0.397               | ND                  | 0.028           | 0.425              |
| Rugged   | ND                  | 0.395               | ND                  | 0.028           | 0.423              |
| Rugged   | ND                  | 0.397               | ND                  | 0.025           | 0.422              |
| Rugged   | ND                  | 0.394               | ND                  | 0.028           | 0.422              |
| Mean     | NA                  | 0.390               | NA                  | 0.030           | 0.419              |
| % RSD    | NA                  | 1.79                | NA                  | 10.00           | 1.19               |

ND: Not detected, NA: Not applicable

**Robustness:** The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small but deliberate variations in method parameters. Deliberate changes were made from original experimental conditions to record the tailing factor and theoretical plates of the Solifenacin succinate Tablets to determine the robustness of the developed method. Data are reported in Table no.11.

|         | Table 11: Robustness, RRT |                               |               |               |               |
|---------|---------------------------|-------------------------------|---------------|---------------|---------------|
| Guine   | Paramete                  | Variation                     |               | RRT           |               |
| Sr. no. | rs                        | S                             | Impurity<br>A | Impurity<br>B | Impurity<br>C |
|         | Control-1                 | -                             | 0.53          | 0.80          | 1.88          |
| 1       | Control-2                 |                               | 0.47          | 0.88          | 2.06          |
|         | Control-3                 |                               | 0.51          | 0.85          | 1.99          |
| 2       | pH of<br>Buffer           | + 0.2<br>units<br>- 0.2 units | 0.64          | 0.77          | 1.79          |
|         | Bullel                    | - 0.2 units                   | 0.49          | 0.85          | 2.02          |

Pharmacophore, 8(2) 2017, Pages: 11-23

| G       | Paramete  | Variation      |               | RRT           |               |
|---------|-----------|----------------|---------------|---------------|---------------|
| Sr. no. | rs        | S              | Impurity<br>A | Impurity<br>B | Impurity<br>C |
| 3       | Flow rate | -<br>0.1ml/min | 0.50          | 0.86          | 2.02          |
|         |           | +0.1ml/m<br>in | 0.46          | 0.85          | 2.01          |
| 4       | Column    | +5°C           | 0.51          | 0.82          | 1.93          |
|         | Temp      | -5°C           | 0.45          | 0.86          | 2.04          |
| 5       | Waveleng  | -5 nm          | 0.51          | 0.85          | 1.99          |
| 5       | th        | +5 nm          | 0.51          | 0.85          | 1.99          |

**Stability of Analytical solution:** The solution stability of sample and standard solution provides an indication of the method's reliability in normal usage during the storage of the solutions used in the method. No significant changes were experienced in the content of any of the impurities during solution stability. The % Cumulative RSD of Standard solution and sample Solution are reported in Table No.12 and 13.

| Sr. No. | Time (hrs) | Response (Area) |
|---------|------------|-----------------|
| 1       | INITIAL    | 94348           |
| 2       | 28         | 93285           |
| 3       | 50         | 93814           |
| 4       | 67         | 93372           |
| 5       | 84         | 93747           |
| 6       | 104        | 92416           |
| %F      | 0.70       |                 |

Table 12: Table for solution stability for diluted standard at room temperature

Table 13: Table for solution stability for sample solution preparation at Room Temperature

| Sr. No. | Time  | Area        |         |      |
|---------|-------|-------------|---------|------|
| 51.110. | (hrs) | Solifenacin | Highest |      |
| 1       | INITI | 14708579    | 72160   | 4759 |
| 2       | 33    | 14726379    | 72787   | 4647 |
| 3       | 43    | 14765971    | 72751   | 4638 |
| 4       | 60    | 14787204    | 72847   | 4741 |
| 5       | 77    | 14833584    | 72749   | 4677 |
| 6       | 97    | 14948871    | 72755   | 4874 |
| %F      | RSD   | 0.59        | 0.35    | 1.88 |

Standard Solution is stable for 104 hrs and Sample solution is stable for 97 hrs at room temperature.

Table 14: Table for System Suitability

Pharmacophore, 8(2) 2017, Pages: 11-23

| Sr.<br>No. | Experiment                                                              | %<br>RS<br>D | Resolution<br>between<br>impurity B and<br>Solifenacin<br>succinate peak | Tailin<br>g<br>factor | Theoretic<br>al Plates |
|------------|-------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|-----------------------|------------------------|
| 1          | Forced degradation<br>-1                                                | 1.31         | 6.6                                                                      | 1.5                   | 49765                  |
| 2          | Forced degradation<br>-2                                                | 1.38         | 8.2                                                                      | 1.3                   | 53965                  |
| 3          | Prediction linearity                                                    | 0.63         | 6.5                                                                      | 1.2                   | 48608                  |
| 4          | Precision,<br>Accuracy, Filter<br>Equivalency,<br>Solution<br>Stability | 0.88         | 4.9                                                                      | 1.3                   | 43101                  |
| 5          | Ruggedness                                                              | 1.35         | 7.2                                                                      | 1.3                   | 29533                  |
| 6          | LOD & LOQ<br>,Linearity                                                 | 0.52         | 5.9                                                                      | 1.3                   | 42777                  |

**SUMMARY AND CONCLUSION:** The Validated HPLC method for the related substance of Solifenacin succinate Tablets is linear, precise, accurate, Robust and specific. The results of the validation carried out for the method satisfied the ICH requirements. This method can be used for the detection and quantification of known, unknown and degradation impurities in the Solifenacin succinate tablets during routine analysis and also for stability studies in view of its capability to separate degradation products.

**ACKNOWLEDGEMENTS:** Authors would like to thanks Glenmark pharmaceutical Limited, Analytical Research Development (Mahape) & Validation (Pithampur), for giving us an opportunity to carry out development and validation for providing necessary facilities in Laboratories. Also, would like to thank Mr. Rahul Khatal, Mr. Deepank Sharma, and Mr. Vishal Gupta for carrying out various experiments.

# LIST OF ABBREVIATIONS:

| Number                                 |  |
|----------------------------------------|--|
| Mobile Phase                           |  |
| Room Temperature                       |  |
| Limit of Detection                     |  |
| Limit of Quantitation                  |  |
| Impurity                               |  |
| Unknown                                |  |
| Maximum                                |  |
| Hours                                  |  |
| High performance Liquid Chromatography |  |
| Relative Standard Deviation            |  |
| Relative retention time                |  |
| Not Detected                           |  |
| Not Applicable                         |  |
| Minutes                                |  |
|                                        |  |

#### **REFERENCES:**

[1] Rami Reddy BV, Srinivasa Reddy B, Raman NVVSS, Subhash Reddy K, Rambabu C. Development and validation of a specific stability indicating High Performance Liquid Chromatographic method for related compounds and assay of solifenacin succinate. J Chem 2013;1-10.

[2] Desai D, Patel G, Shukla N, Rajput S. Development and validation of stability-indicating HPLC Method for solifenacin succinate: Isolation and identification of major base degradation product. Acta Chromatographica 2012;24(3):399–418.

[3] Annapurna MM, Sowjanya G, Santosh Naidu M, Lohithasu D. A validated liquid chromatographic method for the determination of solifenacin succinate (Urinary antispasmodic) in tablets. Chem Sci Transactions 2014;3(2):602-607.

### Pharmacophore, 8(2) 2017, Pages: 11-23

[4] Saroj Kumar R, Ravi kumar BVV, Ajaya Kumar P. A RP-HPLC method development and validation for the estimation of solifenacin in bulk and pharmaceutical dosage forms. Int J of bioassays 2012;01(12):210-213.

[5] Ito Y, Oyunzul L, Yoshida A, Fujino T, Noguchi Y, Yuyama H et al. Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice. European Journal of Pharmacology

2009; 615:201-206. [6] Suzuki M, Ohtake A, Yoshino T, Yuyama H, Hayashi A, Ukai M et al. Effects of solifenacin succinate (YM905) on detrusor overactivity in conscious cerebral infarcted rats. European Journal of Pharmacology 2005; 512: 61-66.

[7] Hiren N, Arvind G, Pudage A, Dhiraj M, Pranav S. Highly sensitive and rapid LC–ESI-MS/MS method for the simultaneous quantification of uroselective  $\alpha$ 1-blocker, alfuzosin and an antimuscarinic agent, solifenacin in human plasma. J. Chromatogr. B 2008; 876: 236–244.

[8] Yanagihara T, Aoki T, Soeishi Y, Iwatsubo T, Kamimura H. Determination of solifenacin succinate, a novel muscarinic receptor antagonist, and its major metabolite in rat plasma by semi-micro high performance liquid chromatography. J. Chromatogr. B 2007; 859: 241–245.

[9] FDA, Food and Drug Administration. Center for Drug Evaluation and Research (CDER), Guidance for Industry "Bioanalytical Methods Validation for Human Studies". U.S. Department of Health and Human Services; 2001.

[10] International Conference on Harmonization Q2 (R1) Validation of analytical procedures

text and methodology.