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ABSTRACT 

Topoisomerase is an essential enzyme required for DNA replication and hence playing a pivotal role in 

oncology. Known and validated target in anticancer drug discovery, and the well-established link between 

the higher enzyme activity and malignancy, makes topoisomerase an excellent target. In this study, a series 

of 36 topoisomerase I and II dual inhibitors, having indolizino[6,7-b]indole ring system as the core 

scaffold, was subjected to molecular modelling study. Molecular attributes such as steric, electrostatic and 

hydrogen bonding and their effect on biological activity were established using 3D QSAR tools; 

comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis 

(CoMSIA). Dual inhibition and indole ring may make these molecules potential anticancer agents. Robust 

and statistically sound model was derived having significant r
2
 and r

2
pred values giving better understanding 

of crucial regions around the scaffold to afford better activity. Dividing the series into test and training sets 

allowed calculations validating the predictive ability of the model. The contour maps and statistical 

analyses may provide positive assistance in developing similar molecules in future. 

Keywords: Topoisomerase, HQSAR, CoMFA, CoMSIA, indolizino[6,7-b]indole, Cancer, Dual 

inhibition. 

INTRODUCTION 

Eukaryotic topoisomerase I (Topo I) is a crucial 

enzyme required for many significant cellular 

processes owing to its ability to relax the double-

helix structure of DNA to allow access to the 

genetic information stored within during activities 

like DNA replication, transcription, and repair.
1
 In 

a similar fashion, Topoisomerase II (Topo II) 

creates double-strand breaks and allows passage 

of double-stranded DNA via the incision to permit 

relaxation of over-coiled DNA.
2
 Since 

topoisomerases are involved in various processes 

such as replication, recombination, chromosome 

segregation and transcription, these enzymes have 

the ability to solve topological challenges related 

to DNA double helical structure by cleaving and 

resealing DNA strands. Topo I and Topo II, 

through diverse mechanisms, play a very crucial 

role of DNA processing needed for the separation 

of chromosomes in order to complete mitosis.
3
 

Topoisomerase inhibitors have been widely used 

as anticancer agents. Topo I inhibitors, the 

camptothecin analogs irinotecan and topotecan 

have been reported for the treatment of colon 

cancer.
4
 Presently two water-soluble derivatives 

of camptothecin, Irinotecan (CPT-11) for the 

treatment of colorectal tumors and Topotecan for 

the treatment of ovarian cancers and small-cell 

lung cancers (SCLC) approved by the FDA for IV 

administration.
5
 Topo II inhibitors such as 

epirubicin, idarubicin, doxorubicin, daunorubicin, 
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teniposide, etoposide, and mitoxantrone are 

notable drugs used in the therapy of many 

malignancies including those of lungs, breast, 

testes and lymphomas and sarcomas.
6
 Recently, it 

has been observed that dual inhibitors of 

topoisomerase I and II have shown significant 

cytotoxic effects and relatively low toxicity thus 

increasing the demand to study them further 

deeply.
7-9

  

The purpose of this research is to understand and 

correlate the molecular bases and their 

corresponding biological activities with the help 

of computational chemical analyses. 

MATERIALS AND METHODS 

Computational Details 

The study was performed using molecular 

modelling package Sybyl-X (v2.0, Tripos Inc., 

USA) running on Intel Core2(TM) Duo computer 

under the Windows OS was used in this modelling 

study. 

Ligand Preparation 

The set of 36 topoisomerase inhibitors was 

selected from literature.
10

 The compounds taken 

for study are shown in the following figure. In 

present study, the negative log of IC50 (pIC50) 

values were used, since it affords significantly 

larger numerical values for the active molecules 

than those for the inactive molecules. The 

obtained pIC50 values were used as the dependent 

variable in the 3D-QSAR study. The 3D-

structures of the molecules were drawn using the 

Builder module of Sybyl. The structures were 

processed to attain the global minimum energy 

structures, which are thought to be the bioactive 

conformations. Energy minimization of the 

ligands was carried out using the Powel gradient 

method, the Tripos force field, Gasteiger Hückel 

charges and a distance dependent dielectric, till a 

gradient of 0.01 kcal mol−1 Å−1 was achieved. 

The set of molecules was divided into training set 

of 28 molecules and test set of 8 molecules. 

Molecules of the test set were chosen owing to 

their chemical diversities among the entire set and 

their varying potencies. 

Comparative Molecular Field Analysis 

(CoMFA) and Comparative Molecular 

Similarity Indices Analysis (CoMSIA) and 

Hologram Quantitative Structure Activity 

Relationship (HQSAR) Studies 

CoMFA has been exploited to calculate forces 

such as polar, hydrophobic, electrostatic, and 

steric interactions working between drugs and 

their biological targets determining their 

interactions. Quantitative Structure Activity 

Relationship (QSAR) tools like CoMFA obtain a 

mathematical pattern where the degree of 

biological activity is compared with the three 

dimensional properties of the compounds. 

Depending upon the patterns derived using such 

QSAR tools, biological activities of the untested 

molecules can be predicted and the structural 

changes required in the existing compounds can 

be predicted to afford novel molecules with better 

activities. A broad set of physicochemical 

descriptors such as structural, conformational, 

geometric, electronic, and thermodynamic 

properties are used to derive a pattern in 

CoMFA.
11

  CoMSIA consists of aligning 

molecules under study based on either structure or 

field, followed by generating a rectangular grid 

enclosing the molecular mass evenly. A probe 

atom is placed in this hypothetical system to 

measure forces like electrostatic, steric, 

hydrophobic, H-bond donor or acceptor fields 

within the rectangular field. Then, the results from 

the field grid are combined with their reported 

biological activities from the compounds under 

study are put into a table and partial least squares 

(PLS) is applied to obtain the final CoMSIA 

model.
12-13

  HQSAR is a relatively simpler 

technique of QSAR analysis in contrast to 3D 

analyses requiring no need to generate and align 

the molecules under study thus taking lesser time 

and computational prowess to derive the QSAR 

model. This analysis highlights contributions of 

every individual molecules towards their 

corresponding biological activities.  

The relationship between 2D fingerprint and 

biological activity is determined using PLS 

methodology. HQSAR model was generated using 

structural features of descriptors as independent 

variables and pIC50 values as dependent variables. 

Statistical analyses are presented in table 4. 
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Statistical Analysis 

The CoMFA and CoMSIA field energies were 

used as independent variables while the pIC50 

values formed the dependent variables. A partial 

least squares (PLS)
14

 regression was then run to 

obtain the 3D-QSAR models. Evaluation of the 

predictive ability of the obtained statistical models 

was performed using the “leave-one-out” (LOO) 

cross-validation procedure.
15-16

 This method 

involves logical exclusion of each molecule from 

the data set and its activity predicted by a model 

which is then deduced from the residual 

molecules. To minimize the possibility of over 

fitting data, the number of components referring 

to the least PRESS value was used to obtain the 

ultimate PLS regression models. SAMPLS
17

 

method with leave-one-out (LOO) validation with 

no column filtering were used for cross-validation 

calculations to determine the q
2
 (r

2
cv) and standard 

error of prediction (SEP). The PLS analysis was 

repeated without cross-validation with the 

optimum number of components and the 

conventional correlation coefficient r
2
, the 

standard errors (SE) and the F-value were 

obtained. Comprehensive data is presented in 

table 4. 

RESULTS 

A number of 3D-QSAR models were derived and 

the best was chosen based on their statistical 

parameters. The statistical parameters for the 3D-

QSAR models derived are given in Table 

CoMFA Analysis 

28 of the total 36 indolizino [6,7-b]indole 

derivatives formed the training set and the 

remaining 8 molecules constituted of the test set. 

These two sets of molecules were used to derive 

and validate the CoMFA model based on atom fit 

alignment. The training and test set molecules 

were selected such that their structural diversities 

and range of potency in the dataset was 

maintained. For the CoMFA model generated, 

partial least squares (PLS) regression produced a 

cross-validated correlation coefficient q
2
 of 0.755 

with 6 components. The non cross-validated PLS 

analysis produced a correlation coefficient (r
2
) of 

0.959, F value of 81.478 and an estimated 

standard error (SE) of 0.163. The steric field 

descriptors explain 91.3% of the variance, while 

the electrostatic descriptors explain 8.7% of the 

variance, signifying that the contribution of the 

steric field is dominant. The model was checked 

for its robustness the bootstrap analysis. The 

bootstrap analysis gave a correlation coefficient 

(r
2

bs) of 0.977 which supports the statistical 

validity of the derived CoMFA model. The 

possibility of chance correlation was eliminated 

by performing Y-scrambling. The correlation 

coefficient r
2
 of 0.1 was obtained. Difference 

between the CoMFA model and y-scrambled 

model shows credibility of the former. 

CoMSIA Analysis 

The CoMSIA analysis was performed with the 

same structural alignment of molecules and same 

size of training and test sets as stated in the 

CoMFA studies. The analysis gave the fields 

holding importance which were steric, 

electrostatic and H-bond donor fields influencing 

molecules’ potency. Combination of these fields 

yielded a q
2
 value of 0.728 with 5 components, 

non cross validated r
2
 of 0.908 having standard 

error of prediction of 0.243, F value as 34.692 

with bootstrap r
2
 value of 0.945. Y-scrambling 

yielded r
2
 of 0.15 suggesting an extremely low 

probability of chance correlation. The steric, 

electrostatic and hydrogen bond acceptor 

contributions of the obtained model were 54.9, 

35.6 and 9.5%, respectively. Hydrogen bond 

donor contribution was found to be significantly 

poor. 

HQSAR Analysis 

The test and training sets used were kept same as 

those used for CoMFA and CoMSIA. The best 

hologram model was generated using HL of 97 

having two optimum components. Bonds, 

hydrogen atoms and donor–acceptor properties 

were used as descriptors. The best generated 

model gave cross-validated r2 (q2) of 0.881 and 

non-cross-validated r2 value of 0.900 with 

standard errors of 0.413 and 0.254 respectively. 

The total collection of these generated models 

comprises ensemble, and the ensemble value for 

r2 was calculated to be 0.894. 
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DISCUSSION 

Predictivity of CoMFA, CoMSIA and HQSAR 

Models 

The 3D-QSAR models were evaluated for their 

predictive powers by having the test set molecules 

excluded in the development of the models. 

External validation is thought to provide a 

validation for a predictive QSAR model, owing to 

complete exclusion of the test set molecules 

during the training of the model. The predicted 

pIC50 values were found to be in good accordance 

with the experimental outputs within a statistically 

tolerable error range. The predictive correlation 

coefficient r
2

pred for CoMFA and CoMSIA models 

derived was 0.713 and 0.768 respectively. 

CoMFA Contour Maps 

The steric interactions are represented by green 

and yellow regions, where increase in activity is 

associated with more bulk near the green and less 

bulk near the yellow contours. The scaffold 

chosen for the CoMFA contour map is 

indolizino[6,7-b]indole depicted in figure 1. As 

seen in the CoMFA contour map, bulky groups at 

R3 and R4 positions of the scaffold are required to 

afford activity whereas bulky groups near R2 

decrease the activity. This phenomenon can be 

observed peculiarly in the case of molecule 7 

where bulky groups; ethyl isopropylcarbamate are 

present at R3 and R4 and least bulky methyl group 

is present at R2. This molecule is the most potent 

in activity. Similarly, molecule 4 carrying a 

relatively lesser bulky ethyl ethylcarbamate 

groups at R3 and R4 with least bulky methyl group 

at R2 is the second most potent molecule. 

Whereas, molecule 15 exhibiting bulky 2-chloro-

1-fluoro-4-methylbenzene at R2 and very little 

bulky ethanol groups at R3 and R4 make it the 

least potent molecule. Molecule 14 having bulky 

1,2-difluoro-4-methylbenzene groups at R3 and R4 

with ethanol at R2 also shows little potency. 

Electrostatic CoMFA contour map reveals 

requirement of electronegative groups near R3 and 

R4 and very little electropositive element near R2. 

One of the most active molecules; molecules 9 

and 25 possess electronegative N and O among 

the substituent groups at R3 and R4 giving them 

sufficient electronegativity at the said positions 

where it is required the most to exhibit activity as 

per the derived contour map. Whereas low activity 

of molecules 13 and 15 can be attributed to lesser 

electronegative groups like –OH at R3 and R4 

combined with highly electronegative halogens 

present in substituents at R2 where such 

arrangement is disfavored. 

CoMSIA Contour Maps 

Similar to the CoMFA contour map outcome, 

CoMSIA contour map suggests requirement of 

bulky steric at positions R3 and R4 of the 

indolizino[6,7-b]indole scaffold depicted in figure 

1 to afford good activity as observed in molecules 

19 and 28. Electrostatic contour map is also in 

agreement with CoMFA electrostatic contour map 

favouring electropositive groups at R2 and 

electronegative groups at R3 and R4 to exhibit 

greater biological activities such as in cases of 

molecules 29 and 36 where former possessing a 

phenyl group shows significantly more potency 

than the latter containing a trimethoxy phenyl 

moiety. 

CONCLUSION 

The 3D QSAR models derived in this study 

corroborate molecular fundamentals for 

topoisomerase inhibition and eventual anticancer 

activity. The models derived here show good 

validity and consistency. The ability to predict via 

these models show a healthy correlation between 

experimentally determined and predicted pIC50 

values considering the test set. Contour maps of 

CoMFA and CoMSIA analyses and HQSAR 

findings provide an important relationship 

between spatial arrangement and activities 

afforded. These models may be used as templates 

to design novel topoisomerase I and II inhibitors 

with having better potencies. 
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Figure 1: Indolizino[6,7-b]indole core scaffold 

Table 1: Indolizino[6,7-b]indole Derivatives taken for 3D QSAR study 

Mol. ID R1 R2 R3 R4 IC50 (µM) (CCRF/CEM) 

1 Me Me CH2OH CH2OH 0.04 

2 Et Me CH2OH CH2OH 0.10 

3 Bn Me CH2OH CH2OH 0.29 

4 Me Me CH2OCONHEt CH2OCONHEt 0.04 

5 Et Me CH2OCONHEt CH2OCONHEt 0.14 

6 Bn Me CH2OCONHEt CH2OCONHEt 0.14 

7 Me Me CH2OCONHi-Pr CH2OCONHi-Pr 0.03 

8 Et Me CH2OCONHi-Pr CH2OCONHi-Pr 0.14 

9 Bn Me CH2OCONHi-Pr CH2OCONHi-Pr 0.10 

10 Me Et CH2OH CH2OH 0.20 

11 Me C6H6 CH2OH CH2OH 1.17 

12 Me 4’-F-C6H4 CH2OH CH2OH 1.46 

13 Me 4’-Cl-C6H4 CH2OH CH2OH 4.58 

14 Me 3’,4’-di-F-C6H3 CH2OH CH2OH 7.94 

15 Me 3’-Cl-4’-F-C6H3 CH2OH CH2OH 14.37 

16 Me 4’-MeO-C6H4 CH2OH CH2OH 1.30 

17 Me 3’,4’-di-MeO-C6H3 CH2OH CH2OH 0.96 

18 Me 3’,4’,5’-tri-MeO-C6H2 CH2OH CH2OH 4.45 

19 Me Et CH2OCONHEt CH2OCONHEt 0.16 

20 Me C6H6 CH2OCONHEt CH2OCONHEt 0.23 

21 Me 4’-F-C6H4 CH2OCONHEt CH2OCONHEt 0.39 

22 Me 4’-Cl-C6H4 CH2OCONHEt CH2OCONHEt 0.35 

23 Me 3’,4’-di-F-C6H3 CH2OCONHEt CH2OCONHEt 0.13 

24 Me 3’-Cl-4’-F-C6H3 CH2OCONHEt CH2OCONHEt 1.80 

25 Me 4’-MeO-C6H4 CH2OCONHEt CH2OCONHEt 0.10 

26 Me 3’,4’-di-MeO-C6H3 CH2OCONHEt CH2OCONHEt 0.30 

27 Me 3’,4’,5’-tri-MeO-C6H2 CH2OCONHEt CH2OCONHEt 0.62 

28 Me Et CH2OCONHi-Pr CH2OCONHi-Pr 0.16 

29 Me C6H6 CH2OCONHi-Pr CH2OCONHi-Pr 0.13 

30 Me 4’-F-C6H4 CH2OCONHi-Pr CH2OCONHi-Pr 0.11 

31 Me 4’-Cl-C6H4 CH2OCONHi-Pr CH2OCONHi-Pr 0.44 

32 Me 3’,4’-di-F-C6H3 CH2OCONHi-Pr CH2OCONHi-Pr 0.44 

33 Me 3’-Cl-4’-F-C6H3 CH2OCONHi-Pr CH2OCONHi-Pr 1.91 

34 Me 4’-MeO-C6H4 CH2OCONHi-Pr CH2OCONHi-Pr 0.12 

35 Me 3’,4’-di-MeO-C6H3 CH2OCONHi-Pr CH2OCONHi-Pr 0.30 

36 Me 3’,4’,5’-tri-MeO-C6H2 CH2OCONHi-Pr CH2OCONHi-Pr 0.95 
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Table 2: Experimental and Predicted pIC50 values of the test set 

Molecule 

ID 

Experimental 

pIC50 

Predicted pIC50 

(CoMFA) 

Predicted pIC50 

(CoMSIA) 

Predicted pIC50 

(HQSAR) 

1 9.869 9.6 9.57 9.621 

3 9.108 9.38 9.29 9.211 

5 9.509 9.29 9.69 9.654 

22 9.184 9.41 9.4 9.079 

29 9.609 9.39 9.89 9.578 

31 9.107 9.38 9.31 9.297 

33 8.483 8.87 8.83 8.201 

34 9.667 9.87 9.76 9.552 

 

 

Table 3: Experimental and Predicted pIC50 values of the training set 

Molecule 

ID 

Experimental 

pIC50 

Predicted pIC50 

(CoMFA) 

Predicted pIC50 

(CoMSIA) 

Predicted pIC50 

(HQSAR) 

2 9.491 9.3629 0.1281 9.184 

4 10.039 10.2139 -0.1749 10.642 

6 9.565 9.5281 0.0369 9.716 

7 10.191 10.0181 0.1729 10.009 

8 9.535 9.6547 -0.1197 9.950 

9 9.734 9.8558 -0.1218 9.661 

10 9.19 9.2201 -0.0301 8.831 

11 8.486 8.3429 0.1431 8.626 

12 8.411 8.1123 0.2987 8.416 

13 7.933 8.1497 -0.2167 7.889 

14 7.696 7.9928 -0.2968 8.101 

15 7.456 7.6373 -0.1813 7.589 

16 8.475 8.3955 0.0795 8.686 

17 8.639 8.7283 -0.0893 8.426 

18 8.003 7.8285 0.1745 7.992 

19 9.451 9.3553 0.0957 9.629 

20 9.337 9.2743 0.0627 9.563 

21 9.123 9.0656 0.0574 9.353 

23 9.615 9.4372 0.1778 9.038 

24 8.487 8.6024 -0.1154 8.526 

25 9.724 9.7534 -0.0294 9.623 

26 9.271 9.1752 0.0958 9.363 

27 8.978 8.9781 -0.0001 8.929 

28 9.477 9.4761 0.0009 9.574 

30 9.696 9.8921 -0.1961 9.299 

32 9.108 9.1519 -0.0439 8.984 

35 9.292 9.1752 0.1168 9.308 

36 8.813 8.8383 -0.0253 8.875 
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Table 4: Statistical Data 

PLS Statistics CoMFA CoMSIA HQSAR 

N 36 36 36 

q
2
 0.755 0.728 0.881 

r
2
 0.959 0.908 0.900 

r
2

pred 0.713 0.768 - 

r
2

bs 0.977 0.945 - 

r
2

y-scrambling 0.1 0.15 - 

F 81.487 34.692 - 

SE 0.163 0.243 - 

PLS Components 6 6 - 

Field Contribution 

 

Steric 

Electrostatic 

H-bond acceptor 

r
2

ensemble 

Best length 

Standard error (r
2
) 

Standard error (q
2
) 

Standard error (r
2

ensemble) 

 

 

0.913 

0.087 

- 

- 

- 

- 

- 

- 

 

 

0.549 

0.356 

0.095 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.894 

97 

0.254 

0.413 

0.431 

 

 
Figure 2: Experimental CoMFA Model 

 

 
Figure 3: Experimental CoMSIA Model 
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Figure 4: Experimental HQSAR Model 

 

 

 

Figure 5: CoMFA Steric Contour Map (A) and CoMFA Electrostatic Contour Map (B) 

 

 

Figure 6: Graphical QSAR (CoMFA, CoMSIA and HQSAR) interpretation 
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Figure 7: CoMSIA Steric Contour Map (C) and CoMSIA Electrostatic Contour Map (D) 
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