THE EFFECTIVENESS OF THE MEDICAL DECISION-MAKING SUPPORT SYSTEM "ELECTRONIC CLINICAL PHARMACOLOGIST" IN THE MANAGEMENT OF PATIENTS THERAPEUTIC PROFILE


1. AO "Socmedica", Skolkovo, Moscow, Russian Federation
2. FSBI Bakulevsky scientific center, Moscow, Russian Federation
3. Laboratory of 3D technologies, Stavropol State Medical University, Stavropol, Russian Federation
4. "E-clinical pharmacologist" Ltd, Russian Federation
5. ANMO "SKKKDC", Stavropol, Russian Federation,
6. IUP "Belinvestfarma", Russian Federation,
7. N.A. Semashko Railroad Clinical Hospital at Lyublino station of JSC Russian Railway, Russian Federation

ARTICLE INFO

Received: 18th Sep 2018
Received in revised form: 21th Mar 2019
Accepted: 02nd Apr 2019
Available online: 28th Apr 2019

Keywords: Artificial intelligence, expert system, medical decision support system, electronic prescription, doctor appointment, electronic clinical pharmacologist, pharmacovigilance, therapy safety.

ABSTRACT

Objective: There is a huge amount of new information about drugs in the scientific world every day that cannot be tracked in time and the practitioner cannot be remembered. There is a large flow of patient data in the clinical practice, where medical information systems are used, which, unfortunately, is not fully processed in real time. The objective of the present study was to decide about the problem by using ECF. Methods: As the semantic core in the ECF was used by the UMKB, which accumulates knowledge from all areas of practical medicine and basic science, starting with the clinical experience of doctors and ending with general pharmacology. Within the framework of UMKB, a separate area is developed, where knowledge in the field of pharmacology is presented in the form of a semantic network. Results: The patient was successfully treated with the support of the ECF system. Pain syndrome in the patient was stopped almost immediately after 2 days, sleep was restored, and the patient stopped waking up in the middle of the night due to pain. Conclusion: Based on the results of the tests the ECF system was introduced into practice in several Russian clinics.

Correlation © 2013 - All Rights Reserved - Pharmacophore

Introduction

Ensuring the safe use of medicines is one of the global priorities of modern health care. According to the world health organization, adverse reactions (side effects) of drugs are among the top ten leading causes of death in many countries. The effectiveness of the detection of drug safety problems largely depends on the attention to pharmacovigilance of doctors and...
Electronic clinical pharmacologist (ECF) is a physician decision support system (DSS) for doctors. The system is based on the Unified Medical Knowledge Base (UMKB), which is updated with the release of new drugs and the release of specialized publications in peer-reviewed biomedical scientific journals. When used in clinical practice, ECF reduces the risks of medical mistakes and errors at the stages of pharmacotherapy, reduces the number of complications and side effects from the use of drugs, reduces the time-spending of the doctor, and improves the quality of medical care. When the patient is discharged, the system generates an electronic prescription by which the patient can apply to any pharmacy and receive the prescribed medicines [4,5].

Within the framework of UMKB, a separate area is developed, where knowledge in the field of pharmacology is presented in the form of a semantic network. It has over a million concepts used in the industry and millions of connections between them, as well as intersystem connections with other sections of UMKB, in particular, with pathological signs and factors that determine the personal characteristics of the organism. Such a volume of formalized knowledge in this field was accumulated with the help of crowdsourcing technology (an expert group of clinical pharmacologists, pharmacists, and doctors of different specialties) in combination with the technology of machine analysis of medical texts. As a result, more than 20 thousand instructions of medicines and more than 8 thousand publications in peer-reviewed biomedical scientific journals were analyzed.

The ECF system is integrated into the MIS ("Jupiter") of the Stavropol diagnostic center, where it allows to check drug prescriptions in the background and issue recommendations at the doctor's electronic workplace. UMKB is located in the "cloud", i.e. the system which transmits depersonalized and encoded data and receives a response from the "cloud" server. The system is updated in real time.

The study was conducted in the ANMO "Stavropol regional clinical consultative and diagnostic center" and LLC "Dental clinic of Professor Dolgalev".

The ECF system was installed on the computers of doctors of clinics and was used as a tool for checking the drug prescriptions.

Results and Discussion

From 2017 to 2018, 500 patients with disorders of the musculoskeletal, urinary, and cardiovascular systems were examined at the Stavropol diagnostic center. In accordance with the inclusion and non-inclusion criteria, 301 patients were selected, which in turn were randomized into two groups (table.1). The first group included 151 patients aged 56±12 years, whose drug prescriptions were carried out using the ECF system at all stages of the patient's stay in the hospital. The second group with 150 patients aged 55±10 years was considered as the control group, where drug therapy was administered without the support of the ECF system.

<table>
<thead>
<tr>
<th>Index</th>
<th>Group 1 (with ECF support)</th>
<th>Group 2 (without ECF support)</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>151</td>
<td>150</td>
<td>301</td>
</tr>
<tr>
<td>Age, years (m±D)</td>
<td>56±12</td>
<td>55±10</td>
<td>55.5±11</td>
</tr>
<tr>
<td>Sex m / f</td>
<td>76/75</td>
<td>80/70</td>
<td>156/145</td>
</tr>
<tr>
<td>Psoriatic arthritis, abs. number of patients (%)</td>
<td>57 (38%)</td>
<td>45 (30%)</td>
<td>102 (34%)</td>
</tr>
<tr>
<td>Coronary heart disease, abs. number of patients (%)</td>
<td>51 (34%)</td>
<td>48 (32%)</td>
<td>99 (33%)</td>
</tr>
<tr>
<td>Pyelonephritis, abs. number of patients (%)</td>
<td>42 (28%)</td>
<td>56 (37.3%)</td>
<td>98 (32.6%)</td>
</tr>
</tbody>
</table>
Based on the clinical, x-ray, and biochemical data, the doctor prescribed the therapy as follows: methotrexate (repeated courses), clopidogrel (4 tablets in the morning), omeprazole (20 mg once a day), dexamethasone (I/m, 1 ml once a day), Ketonal (capsules of 50 mg, 2 times a day), bisoprolol (tablets of 5 mg, 1 time a day) (Fig. 1).
When checking the entered data, the system issued 3 warnings aimed at helping the doctor to optimize the selection of drug therapy:

1. Drug-drug interactions.
2. Contraindications and limitations.
3. Age limit.

In this case, there were 4 drugs that could enter into the patient's body in inter-drug interactions.

Figure 3 shows the interaction between Ketonal and clopidogrel, which in this case was generally insignificant (which is indicated in blue). Despite the antiplatelet effect of both drugs, their combination is rational and the risk of gastrointestinal bleeding is low.

The system focused on the combination of methotrexate and omeprazole. Thus, their combined use is expected to increase the concentration of methotrexate in the blood plasma, which is a factor in enhancing its pharmacodynamic effects.

Warning “use with caution” system issued in relation to the combination of dexamethasone and Ketonal, since their combined use in this patient was likely to increase the risk of erosive and ulcerative bleeding in the gastrointestinal tract (GI). In this connection, it was recommended to conduct fibrogastroduodenoscopy (FGDs) before using this combination.

Age restrictions in our example were relevant for the use of methotrexate in the treatment regimen (elderly, 67 years).
The potential incompatibility of dexamethasone and bisoprolol with alcohol and alcohol-containing products was also noted by the ECF system. Bisoprolol in combination with ethanol can cause orthostatic hypotension in the human body. Therefore, it is necessary to exclude the use of alcoholic beverages when taking this drug on the recommendation of the system. The patient was successfully treated with the support of the ECF system. Pain syndrome in the patient was stopped almost immediately after 2 days, sleeping was restored, and the patient stopped waking up in the middle of the night because of pain.

Conclusion

The ECF system was integrated into the IIA "Jupiter" of Stavropol diagnostic center. The system showed easy IP functionality for integration.

The use of ECF has improved the efficiency of error detection in the appointment of drugs in the following pathologies: CHD, pyelonephritis, and psoriatic arthritis up to 90%: when handling psoriatic arthritis – 90%, when handling pyelonephritis - 87.09%, and when dealing with complaints of CHD – 90% compared with the control group.

Based on the results of the tests, the ECF system was introduced into practice in the following medical institutions: Voronezh diagnostic center, Stavropol diagnostic center, Dolgalev Clinic.

Today, the Electronic clinical pharmacologist system is undergoing a pilot clinical testing in several regions of the Russian Federation (Stavropol territory, Irkutsk region, Moscow, Moscow region, Rostov region). The project team developed recommendations for the use and implementation of the latest cybernetic medical systems, their modernization, and development of similar systems.

Author’s Contribution

G. A. Bledzhyants, A. E. Mishvelov and K.V. Nuzhnaya developed the program source. O. I. Anfinogenova managed the project, J. A. Isakova evaluated the pharmacological statistics, R. S. Melkonyan supervised the medical research, G. Y. Hite carried out a practical investigation. V. E. Suprunchuk, A. V. Makova, and A. N. Popov tested the system and prepared the manuscript. V. S. Ovechkin reviewed and edited the manuscript. M.P. Marinicheva supported all technical aspects of the experiment.

Conflict of Interest

The authors declare no conflicts of interest

Acknowledgment

The support of the project is provided by the state Innovation center SKOLKOVO and ANMO Stavropol diagnostic center. The project was implemented on the basis of the latest developments in the field of artificial intelligence of “SocMedica” Ltd, using the expert decision support system - “Electronic clinical pharmacologist”.

References

4. Oboturova NP, Evdokimov IA, Nagdalian AA, Kulikov YI, Gusevskaya OA. The study on the influence of the electrohydraulic effect on the diffusion coefficient and the penetration depth of salt into muscle tissues during salting. Foods and Raw materials. 2015;3(2).

11. How pharmaceutical companies corrupt science. Wolf Kitses, Ben Goldacre. // RIPOI classic; M.; 2016; 258