Pharmacophore an International Research Journal
Submit Manuscript
Open Access | Published: 2022 - Issue 6


Liza Tybaco Billones1*, Alex Cerbito Gonzaga1


  1. Department of Physical Sciences and Mathematics, College of Arts and Sciences University of the Philippines Manila, Padre Faura, Ermita, Manila, 1000 Philippines.


The discovery of next-generation non-steroidal anti-inflammatory drugs (NSAIDs) remains an active area of research as over a billion people suffer from pain and inflammation. A strategic approach in this endeavor is establishing a quantitative relationship between the anti-inflammatory activity and the molecular descriptors of inhibitors of cyclooxygenase-2 (COX-2) that will streamline and expedite the discovery and the subsequent development of novel NSAIDs devoid of side effects associated with COX-1 inhibition. In this work, Random Forest (RF) technique was implemented to formulate a robust quantitative model that predicts the inhibitory activity of compounds on COX-2. The model established in this work displayed excellent predictive performance on compound classification with 93% accuracy and 0.98 AUC. Upon application to two external sets, 759 newly designed derivatives of COX-2 inhibitors and 188 structurally similar compounds were predicted active; 19 of them were found to be promising leads as COX-2-acting anti-inflammatory drugs. The top 2 hits with the highest probability of being active were also found to have the strongest binding affinity with COX-2 and are superior to the known COX-2 selective inhibitors. The RF model is likewise conservative in identifying compounds as active making it all the more beneficial as it helps avoid costly failures at the later stages of the drug discovery phase.

Keywords: Molecular descriptors, NSAID, COX-2 inhibitors, Random forest, Anti-inflammatory



1.        Global Industry Analysts, Inc. Global pain management market to reach US$60 billion by 2015. According to a new report by Global Industry Analysts, Inc. 2011 [cited 2022 Nov 1]. Available from:

2.        Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147(2):227-35. doi:10.1111/j.1365-2249.2006.03261.x

3.        Mallbris L, Akre O, Granath F, Yin L, Lindelöf B, Ekbom A, et al. Increased risk for cardiovascular mortality in psoriasis inpatients but not in outpatients. Eur J Epidemiol. 2004;19(3):225-30. doi:10.1023/b:ejep.0000020447.59150.f9

4.        Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia. 2010;53(1):10-20. doi:10.1007/s00125-009-1573-7

5.        Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732-41. doi:10.1016/j.biopsych.2008.11.029

6.        Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-99. doi:10.1016/j.cell.2010.01.025

7.        National Fibromyalgia & Chronic Pain Association. Pain facts: an overview of American Pain Surveys, 2015 [cited 2019 July]. Available from:

8.        American Academy of Pain Association. Facts and figures on pain, 2016 [cited 2019 July]. Available from:

9.        Litalien C, Beaulieu P. Molecular mechanisms of drug actions: from receptors to effectors. In Fuhrman BP, Zimmerman JJ (eds.). Pediatric critical care (4th Ed.). Philadelphia, PA: Elsevier Saunders; 2011. pp. 1553-68.

10.     Soboleva MS, Loskutova EE, Kosova IV, Amelina IV. Problems and the Prospects of Pharmaceutical Consultation in the Drugstores. Arch Pharm Pract. 2020;11(2):154-9.

11.     Vo TH, Dang TN, Nguyen TT, Nguyen DT. An Educational Intervention to Improve Adverse Drug Reaction Reporting: An Observational Study in a Tertiary Hospital in Vietnam. Arch Pharma Pract. 2020;11(3):32-7.

12.     Nakagawa N. Comparative study between formative assessment and flipped classroom lectures in a drug information course. J Adv Pharm Educ Res. 2021;11(2):5-10.

13.     Fu JY, Masferrer JL, Siebert K, Raz A, Needleman PJ. The induction of prostaglandin-H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265(28):16737-40.

14.     Gierse JK, Hauser SD, Creely DP, Koboldt C, Rangwala SH, Isakson PC, et al. Expression and selective inhibition of the constitutive and inducible forms of human cyclo-oxygenase. Biochem J. 1995;305(Pt 2)(Pt 2):479-84. doi:10.1042/bj3050479

15.     Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A. 2002;99(21):13926-31. doi:10.1073/pnas.162468699

16.     Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology. 2008;135(1):41-60. doi:10.1053/j.gastro.2008.05.030

17.     Kurumbail RG, Kiefer JR, Marnett LJ. Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol. 2001;11(6):752-60. doi:10.1016/s0959-440x(01)00277-9

18.     Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem. 1997;40(9):1347-65.

19.     Riendeau D, Percival MD, Brideau C, Charleson S, Dubé D, Ethier D, et al. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J Pharmacol Exp Ther. 2001;296(2):558-66.

20.     Talley JJ, Bertenshaw SR, Brown DL, Carter JS, Graneto MJ, Kellogg MS, et al. N-[[(5-methyl-3-phenylisoxazol-4-yl)-phenyl]sulfonyl]propanamide, sodium salt, parecoxib sodium: A potent and selective inhibitor of COX-2 for parenteral administration. J Med Chem. 2000;43(9):1661-3.

21.     Bally M, Dendukuri N, Rich B, Nadeau L, Helin-Salmivaara A, Garbe E, et al. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ. 2017;357:j1909. doi:10.1136/bmj.j1909

22.     Lanas A, Chan FKL. Peptic ulcer disease. Lancet. 2017;390(10094):613-24. doi:10.1016/S0140-6736(16)32404-7

23.     Breiman L. Random forests. In: Machine learning, Kluwer Academic Publishers, The Netherlands. 2001;45(1):5-32.

24.     Boulesteix AL, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip Rev Data Min Knowl Discov. 2012;2(6):493-507.

25.     Hsueh HM, Zhou DW, Tsai CA. Random forests-based differential analysis of gene sets for gene expression data. Gene. 2013;518(1):179-86. doi:10.1016/j.gene.2012.11.034

26.     Lind AP, Anderson PC. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS One. 2019;14(7):e0219774. doi:10.1371/journal.pone.0219774

27.     Tetschke F, Schneider U, Schleussner E, Witte OW, Hoyer D. Assessment of fetal maturation age by heart rate variability measures using random forest methodology. Comput Biol Med. 2016;70:157-62. doi:10.1016/j.compbiomed.2016.01.020

28.     Mayo SL, Olafson BD, Goddard WA. Dreiding: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897-909.

29.     Macalino SJY. Molecular dynamics simulation of human COX-2. Unpublished work, 2021.

30.     Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. doi:10.1002/jcc.21334

31.     Billones LT, Gonzaga AC. Multiple Logistic Regression Modeling of Compound Class (Active/Inactive) and Prediction on Designed Coxib Derivatives and Compounds Similar to Known COX-2 Inhibitors. Chem-Bio Inform J. 2022;22:63- 87. doi:10.1273/cbij.22.63

32.     Kullback S, Leibler RA. On information and sufficiency. Annals Math Stat. 1951;22(1):79-86.

33.     Billones LT, Morales NB, Billones JB. Logistic regression and random forest unveil key molecular descriptors of druglikeness. Chem-Bio Inform J. 2021;21:39-58.

34.     Gini C. On the measure of concentration with special reference to income and statistics. Colorado College Publication, General Series. 1936;208(1):73-9.

35.     Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81-106.

36.     Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem. 2012;4(2):90-8. doi:10.1038/nchem.1243

37.     Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform. 2009;1(1):8. doi:10.1186/1758-2946-1-8

38.     Orlando BJ, Malkowski MG. Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone. J Biol Chem. 2016;291(29):15069-81. doi:10.1074/jbc.M116.725713


QR code:

Short Link:
Views: 47

Downloads: 28
Quick Access

ISSN: 2229-5402

© 2024 All rights reserved
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.